gtk.Signals

Undocumented in source.

Public Imports

gtkc.gtktypes
public import gtkc.gtktypes;
Undocumented in source.

Members

Classes

Signals
class Signals

Description The GTK+ signal system merely proxies the GLib signal system now. For future usage, direct use of the GSignal API is recommended, this avoids significant performance hits where GtkArg structures have to be converted into GValues. What are signals? Signals are a way to get notification when something happens and to customize object behavior according to the user's needs. Every signal is uniquely identified by a name, "class_name::signal_name", where signal_name might be something like "clicked" and class_name might be "GtkButton". Note that some other class may also define a "clicked" callback, so long as it doesn't derive from GtkButton. When they are created, they are also assigned a unique positive integer, the signal id (1 is the first signal id- 0 is used to flag an error). Each is also tied to an array of types that describes the prototype of the function pointer(s) (handlers) you may connect to the signal. Finally, every signal has a default handler that is given by a function pointer in its class structure: it is run by default whenever the signal is emitted. (It is possible that a signal will be emitted and a user-defined handler will prevent the default handler from being run.) Signals are used by everyone, but they are only created on a per class basis -- so you should not call call gtk_signal_new() unless you are writing a new GtkObject type. However, if you want to make a new signal for an existing type, you may use gtk_object_class_user_signal_new() to create a signal that doesn't correspond to a class's builtin methods. <hr> How are signals used? There are two basic actions in the signal handling game. If you want notification of an event, you must connect a function pointer and a data pointer to that signal; the data pointer will be passed as the last argument to the function (so long as you are using the default marshalling functions). You will receive a connection id, a unique positive integer corresponding to that attachment. Functions that want to notify the user of certain actions, emit signals. <hr> Basic Terminology signal A class method, e.g. GtkButton::clicked. More precisely it is a unique class-branch/signal-name pair. This means you may not define a signal handler for a class which derives from GtkButton that is called clicked, but it is okay to share signals names if they are separate in the class tree. default handler The object's internal method which is invoked when the signal is emitted. user-defined handler A function pointer and data connected to a signal (for a particular object). There are really two types: those which are connected normally, and those which are connected by one of the connect_after functions. The connect_after handlers are always run after the default handler. Many toolkits refer to these as callbacks. emission the whole process of emitting a signal, including the invocation of all the different handler types mentioned above. signal id The unique positive (nonzero) integer used to identify a signal. It can be used instead of a name to many functions for a slight performance improvement. connection id The unique positive (nonzero) integer used to identify the connection of a user-defined handler to a signal. Notice that it is allowed to connect the same function-pointer/user-data pair twice, so there is no guarantee that a function-pointer/user-data maps to a unique connection id. <hr> A brief note on how they work. The functions responsible for translating an array of GtkArgs to your C compiler's normal semantics are called Marshallers. They are identified by gtk_marshal_return_value__parameter_list() for example a C function returning a gboolean and taking a gint can be invoked by using gtk_marshal_BOOL__INT(). Not all possibly combinations of return/params are available, of course, so if you are writing a GtkObject with parameters you might have to write a marshaller.

Meta