Sets our main struct and passes it to the parent class
Creates a new ui manager object. Since 2.4
The "actions-changed" signal is emitted whenever the set of actions changes. Since 2.4
The add_widget signal is emitted for each generated menubar and toolbar. It is not emitted for generated popup menus, which can be obtained by gtk_ui_manager_get_widget(). Since 2.4
The connect_proxy signal is emitted after connecting a proxy to an action in the group. This is intended for simple customizations for which a custom action class would be too clumsy, e.g. showing tooltips for menuitems in the statusbar. Since 2.4
The disconnect_proxy signal is emitted after disconnecting a proxy from an action in the group. Since 2.4
The post_activate signal is emitted just after the action is activated. This is intended for applications to get notification just after any action is activated. Since 2.4
The pre_activate signal is emitted just before the action is activated. This is intended for applications to get notification just before any action is activated. Since 2.4 See Also GtkBuilder
Adds a UI element to the current contents of self. If type is GTK_UI_MANAGER_AUTO, GTK+ inserts a menuitem, toolitem or separator if such an element can be inserted at the place determined by path. Otherwise type must indicate an element that can be inserted at the place determined by path. If path points to a menuitem or toolitem, the new element will be inserted before or after this item, depending on top. Since 2.4
Parses a file containing a UI definition and merges it with the current contents of self. Since 2.4
Parses a string containing a UI definition and merges it with the current contents of self. An enclosing <ui> element is added if it is missing. Since 2.4
Makes sure that all pending updates to the UI have been completed. This may occasionally be necessary, since GtkUIManager updates the UI in an idle function. A typical example where this function is useful is to enforce that the menubar and toolbar have been added to Since 2.4
Returns the GtkAccelGroup associated with self. Since 2.4
Looks up an action by following a path. See gtk_ui_manager_get_widget() for more information about paths. Since 2.4
Returns the list of action groups associated with self. Since 2.4
Returns whether menus generated by this GtkUIManager will have tearoff menu items. Since 2.4
the main Gtk struct as a void*
Obtains a list of all toplevel widgets of the requested types. Since 2.4
Creates a UI definition of the merged UI. Since 2.4
Looks up a widget by following a path. The path consists of the names specified in the XML description of the UI. separated by '/'. Elements which don't have a name or action attribute in the XML (e.g. <popup>) can be addressed by their XML element name (e.g. "popup"). The root element ("/ui") can be omitted in the path.
Inserts an action group into the list of action groups associated with self. Actions in earlier groups hide actions with the same name in later groups. Since 2.4
Returns an unused merge id, suitable for use with gtk_ui_manager_add_ui(). Since 2.4
Removes an action group from the list of action groups associated with self. Since 2.4
Unmerges the part of selfs content identified by merge_id. Since 2.4
Sets the "add_tearoffs" property, which controls whether menus generated by this GtkUIManager will have tearoff menu items. Note that this only affects regular menus. Generated popup menus never have tearoff menu items. Since 2.4
the main Gtk struct
the main Gtk struct
the main Gtk struct as a void*
Gets a D Object from the objects table of associations.
The notify signal is emitted on an object when one of its properties has been changed. Note that getting this signal doesn't guarantee that the value of the property has actually changed, it may also be emitted when the setter for the property is called to reinstate the previous value. This signal is typically used to obtain change notification for a single property, by specifying the property name as a detail in the It is important to note that you must use canonical parameter names as detail strings for the notify signal. See Also GParamSpecObject, g_param_spec_object()
Installs a new property. This is usually done in the class initializer. Note that it is possible to redefine a property in a derived class, by installing a property with the same name. This can be useful at times, e.g. to change the range of allowed values or the default value.
Installs new properties from an array of GParamSpecs. This is usually done in the class initializer. The property id of each property is the index of each GParamSpec in the pspecs array. The property id of 0 is treated specially by GObject and it should not be used to store a GParamSpec. This function should be used if you plan to use a static array of GParamSpecs and g_object_notify_by_pspec(). For instance, this Since 2.26
Looks up the GParamSpec for a property of a class.
Get an array of GParamSpec* for all properties of a class.
Registers property_id as referring to a property with the name name in a parent class or in an interface implemented by oclass. This allows this class to override a property implementation in a parent class or to provide the implementation of a property from an interface. Note Internally, overriding is implemented by creating a property of type GParamSpecOverride; generally operations that query the properties of the object class, such as g_object_class_find_property() or g_object_class_list_properties() will return the overridden property. However, in one case, the construct_properties argument of the constructor virtual function, the GParamSpecOverride is passed instead, so that the param_id field of the GParamSpec will be correct. For virtually all uses, this makes no difference. If you need to get the overridden property, you can call g_param_spec_get_redirect_target(). Since 2.4
Add a property to an interface; this is only useful for interfaces that are added to GObject-derived types. Adding a property to an interface forces all objects classes with that interface to have a compatible property. The compatible property could be a newly created GParamSpec, but normally g_object_class_override_property() will be used so that the object class only needs to provide an implementation and inherits the property description, default value, bounds, and so forth from the interface property. This function is meant to be called from the interface's default vtable initialization function (the class_init member of GTypeInfo.) It must not be called after after class_init has been called for any object types implementing this interface. Since 2.4
Find the GParamSpec with the given name for an interface. Generally, the interface vtable passed in as g_iface will be the default vtable from g_type_default_interface_ref(), or, if you know the interface has already been loaded, g_type_default_interface_peek(). Since 2.4
Lists the properties of an interface.Generally, the interface vtable passed in as g_iface will be the default vtable from g_type_default_interface_ref(), or, if you know the interface has already been loaded, g_type_default_interface_peek(). Since 2.4
Increases the reference count of object.
Decreases the reference count of object. When its reference count drops to 0, the object is finalized (i.e. its memory is freed).
Increase the reference count of object, and possibly remove the floating reference, if object has a floating reference. In other words, if the object is floating, then this call "assumes ownership" of the floating reference, converting it to a normal reference by clearing the floating flag while leaving the reference count unchanged. If the object is not floating, then this call adds a new normal reference increasing the reference count by one. Since 2.10
Clears a reference to a GObject. object_ptr must not be NULL. If the reference is NULL then this function does nothing. Otherwise, the reference count of the object is decreased and the pointer is set to NULL. This function is threadsafe and modifies the pointer atomically, using memory barriers where needed. A macro is also included that allows this function to be used without pointer casts. Since 2.28
Checks whether object has a floating reference. Since 2.10
This function is intended for GObject implementations to re-enforce a floating object reference. Doing this is seldomly required: all GInitiallyUnowneds are created with a floating reference which usually just needs to be sunken by calling g_object_ref_sink(). Since 2.10
Adds a weak reference callback to an object. Weak references are used for notification when an object is finalized. They are called "weak references" because they allow you to safely hold a pointer to an object without calling g_object_ref() (g_object_ref() adds a strong reference, that is, forces the object to stay alive).
Removes a weak reference callback to an object.
Adds a weak reference from weak_pointer to object to indicate that the pointer located at weak_pointer_location is only valid during the lifetime of object. When the object is finalized, weak_pointer will be set to NULL.
Removes a weak reference from object that was previously added using g_object_add_weak_pointer(). The weak_pointer_location has to match the one used with g_object_add_weak_pointer().
Increases the reference count of the object by one and sets a callback to be called when all other references to the object are dropped, or when this is already the last reference to the object and another reference is established. This functionality is intended for binding object to a proxy object managed by another memory manager. This is done with two paired references: the strong reference added by g_object_add_toggle_ref() and a reverse reference to the proxy object which is either a strong reference or weak reference. The setup is that when there are no other references to object, only a weak reference is held in the reverse direction from object to the proxy object, but when there are other references held to object, a strong reference is held. The notify callback is called when the reference from object to the proxy object should be toggled from strong to weak (is_last_ref true) or weak to strong (is_last_ref false). Since a (normal) reference must be held to the object before calling g_object_toggle_ref(), the initial state of the reverse link is always strong. Multiple toggle references may be added to the same gobject, however if there are multiple toggle references to an object, none of them will ever be notified until all but one are removed. For this reason, you should only ever use a toggle reference if there is important state in the proxy object. Since 2.8
Removes a reference added with g_object_add_toggle_ref(). The reference count of the object is decreased by one. Since 2.8
Emits a "notify" signal for the property property_name on object. When possible, eg. when signaling a property change from within the class that registered the property, you should use g_object_notify_by_pspec() instead.
Emits a "notify" signal for the property specified by pspec on object. This function omits the property name lookup, hence it is faster than g_object_notify(). One way to avoid using g_object_notify() from within the class that registered the properties, and using g_object_notify_by_pspec() instead, is to store the GParamSpec used with Since 2.26
Increases the freeze count on object. If the freeze count is non-zero, the emission of "notify" signals on object is stopped. The signals are queued until the freeze count is decreased to zero. This is necessary for accessors that modify multiple properties to prevent premature notification while the object is still being modified.
Reverts the effect of a previous call to g_object_freeze_notify(). The freeze count is decreased on object and when it reaches zero, all queued "notify" signals are emitted. It is an error to call this function when the freeze count is zero.
Gets a named field from the objects table of associations (see g_object_set_data()).
Each object carries around a table of associations from strings to pointers. This function lets you set an association. If the object already had an association with that name, the old association will be destroyed.
Like g_object_set_data() except it adds notification for when the association is destroyed, either by setting it to a different value or when the object is destroyed. Note that the destroy callback is not called if data is NULL.
Remove a specified datum from the object's data associations, without invoking the association's destroy handler.
This function gets back user data pointers stored via g_object_set_qdata().
This sets an opaque, named pointer on an object. The name is specified through a GQuark (retrived e.g. via g_quark_from_static_string()), and the pointer can be gotten back from the object with g_object_get_qdata() until the object is finalized. Setting a previously set user data pointer, overrides (frees) the old pointer set, using NULL as pointer essentially removes the data stored.
This function works like g_object_set_qdata(), but in addition, a void (*destroy) (gpointer) function may be specified which is called with data as argument when the object is finalized, or the data is being overwritten by a call to g_object_set_qdata() with the same quark.
This function gets back user data pointers stored via g_object_set_qdata() and removes the data from object without invoking its destroy() function (if any was set). Usually, calling this function is only required to update
Sets a property on an object.
Gets a property of an object. value must have been initialized to the expected type of the property (or a type to which the expected type can be transformed) using g_value_init(). In general, a copy is made of the property contents and the caller is responsible for freeing the memory by calling g_value_unset(). Note that g_object_get_property() is really intended for language bindings, g_object_get() is much more convenient for C programming.
Sets properties on an object.
Gets properties of an object. In general, a copy is made of the property contents and the caller is responsible for freeing the memory in the appropriate manner for the type, for instance by calling g_free() or g_object_unref(). See g_object_get().
This function essentially limits the life time of the closure to the life time of the object. That is, when the object is finalized, the closure is invalidated by calling g_closure_invalidate() on it, in order to prevent invocations of the closure with a finalized (nonexisting) object. Also, g_object_ref() and g_object_unref() are added as marshal guards to the closure, to ensure that an extra reference count is held on object during invocation of the closure. Usually, this function will be called on closures that use this object as closure data.
Releases all references to other objects. This can be used to break reference cycles. This functions should only be called from object system implementations.
the main Gtk struct as a void*
Sets the name of the buildable object. Since 2.12
Gets the name of the buildable object. GtkBuilder sets the name based on the the GtkBuilder UI definition used to construct the buildable. Since 2.12
Adds a child to buildable. type is an optional string describing how the child should be added. Since 2.12
Sets the property name name to value on the buildable object. Since 2.12
Constructs a child of buildable with the name name. GtkBuilder calls this function if a "constructor" has been specified in the UI definition. Since 2.12
This is called for each unknown element under <child>. Since 2.12
This is called at the end of each custom element handled by the buildable. Since 2.12
This is similar to gtk_buildable_parser_finished() but is called once for each custom tag handled by the buildable. Since 2.12
Called when the builder finishes the parsing of a GtkBuilder UI definition. Note that this will be called once for each time gtk_builder_add_from_file() or gtk_builder_add_from_string() is called on a builder. Since 2.12
Get the internal child called childname of the buildable object. Since 2.12
Description A GtkUIManager constructs a user interface (menus and toolbars) from one or more UI definitions, which reference actions from one or more action groups. UI Definitions The UI definitions are specified in an XML format which can be roughly described by the following DTD. Do not confuse the GtkUIManager UI Definitions described here with the similarly named GtkBuilder UI Definitions. <!ELEMENT ui (menubar|toolbar|popup|accelerator)* > <!ELEMENT menubar (menuitem|separator|placeholder|menu)* > <!ELEMENT menu (menuitem|separator|placeholder|menu)* > <!ELEMENT popup (menuitem|separator|placeholder|menu)* > <!ELEMENT toolbar (toolitem|separator|placeholder)* > <!ELEMENT placeholder (menuitem|toolitem|separator|placeholder|menu)* > <!ELEMENT menuitem EMPTY > <!ELEMENT toolitem (menu?) > <!ELEMENT separator EMPTY > <!ELEMENT accelerator EMPTY > <!ATTLIST menubar name num;IMPLIED action num;IMPLIED > <!ATTLIST toolbar name num;IMPLIED action num;IMPLIED > <!ATTLIST popup name num;IMPLIED action num;IMPLIED accelerators (true|false) num;IMPLIED > <!ATTLIST placeholder name num;IMPLIED action num;IMPLIED > <!ATTLIST separator name num;IMPLIED action num;IMPLIED expand (true|false) num;IMPLIED > <!ATTLIST menu name num;IMPLIED action num;REQUIRED position (top|bot) num;IMPLIED > <!ATTLIST menuitem name num;IMPLIED action num;REQUIRED position (top|bot) num;IMPLIED always-show-image (true|false) num;IMPLIED > <!ATTLIST toolitem name num;IMPLIED action num;REQUIRED position (top|bot) num;IMPLIED > <!ATTLIST accelerator name num;IMPLIED action num;REQUIRED > There are some additional restrictions beyond those specified in the DTD, e.g. every toolitem must have a toolbar in its anchestry and every menuitem must have a menubar or popup in its anchestry. Since a GMarkup parser is used to parse the UI description, it must not only be valid XML, but valid GMarkup. If a name is not specified, it defaults to the action. If an action is not specified either, the element name is used. The name and action attributes must not contain '/' characters after parsing (since that would mess up path lookup) and must be usable as XML attributes when enclosed in doublequotes, thus they must not '"' characters or references to the quot; entity. The constructed widget hierarchy is very similar to the element tree of the XML, with the exception that placeholders are merged into their parents. The correspondence of XML elements to widgets should be almost obvious: menubar a GtkMenuBar toolbar a GtkToolbar popup a toplevel GtkMenu menu a GtkMenu attached to a menuitem menuitem a GtkMenuItem subclass, the exact type depends on the action toolitem a GtkToolItem subclass, the exact type depends on the action. Note that toolitem elements may contain a menu element, but only if their associated action specifies a GtkMenuToolButton as proxy. separator a GtkSeparatorMenuItem or GtkSeparatorToolItem accelerator a keyboard accelerator The "position" attribute determines where a constructed widget is positioned wrt. to its siblings in the partially constructed tree. If it is "top", the widget is prepended, otherwise it is appended. <hr> UI Merging The most remarkable feature of GtkUIManager is that it can overlay a set of menuitems and toolitems over another one, and demerge them later. Merging is done based on the names of the XML elements. Each element is identified by a path which consists of the names of its anchestors, separated by slashes. For example, the menuitem named "Left" in the example above has the path /ui/menubar/JustifyMenu/Left and the toolitem with the same name has path /ui/toolbar1/JustifyToolItems/Left. <hr> Accelerators Every action has an accelerator path. Accelerators are installed together with menuitem proxies, but they can also be explicitly added with <accelerator> elements in the UI definition. This makes it possible to have accelerators for actions even if they have no visible proxies. <hr> Smart Separators The separators created by GtkUIManager are "smart", i.e. they do not show up in the UI unless they end up between two visible menu or tool items. Separators which are located at the very beginning or end of the menu or toolbar containing them, or multiple separators next to each other, are hidden. This is a useful feature, since the merging of UI elements from multiple sources can make it hard or impossible to determine in advance whether a separator will end up in such an unfortunate position. For separators in toolbars, you can set expand="true" to turn them from a small, visible separator to an expanding, invisible one. Toolitems following an expanding separator are effectively right-aligned. <hr> Empty Menus Submenus pose similar problems to separators inconnection with merging. It is impossible to know in advance whether they will end up empty after merging. GtkUIManager offers two ways to treat empty submenus: make them disappear by hiding the menu item they're attached to add an insensitive "Empty" item The behaviour is chosen based on the "hide_if_empty" property of the action to which the submenu is associated. <hr> GtkUIManager as GtkBuildable The GtkUIManager implementation of the GtkBuildable interface accepts GtkActionGroup objects as <child> elements in UI definitions. A GtkUIManager UI definition as described above can be embedded in an GtkUIManager <object> element in a GtkBuilder UI definition. The widgets that are constructed by a GtkUIManager can be embedded in other parts of the constructed user interface with the help of the "constructor" attribute. See the example below.