Idle

Description The main event loop manages all the available sources of events for GLib and GTK+ applications. These events can come from any number of different types of sources such as file descriptors (plain files, pipes or sockets) and timeouts. New types of event sources can also be added using g_source_attach(). To allow multiple independent sets of sources to be handled in different threads, each source is associated with a GMainContext. A GMainContext can only be running in a single thread, but sources can be added to it and removed from it from other threads. Each event source is assigned a priority. The default priority, G_PRIORITY_DEFAULT, is 0. Values less than 0 denote higher priorities. Values greater than 0 denote lower priorities. Events from high priority sources are always processed before events from lower priority sources. Idle functions can also be added, and assigned a priority. These will be run whenever no events with a higher priority are ready to be processed. The GMainLoop data type represents a main event loop. A GMainLoop is created with g_main_loop_new(). After adding the initial event sources, g_main_loop_run() is called. This continuously checks for new events from each of the event sources and dispatches them. Finally, the processing of an event from one of the sources leads to a call to g_main_loop_quit() to exit the main loop, and g_main_loop_run() returns. It is possible to create new instances of GMainLoop recursively. This is often used in GTK+ applications when showing modal dialog boxes. Note that event sources are associated with a particular GMainContext, and will be checked and dispatched for all main loops associated with that GMainContext. GTK+ contains wrappers of some of these functions, e.g. gtk_main(), gtk_main_quit() and gtk_events_pending(). Creating new source types One of the unusual features of the GMainLoop functionality is that new types of event source can be created and used in addition to the builtin type of event source. A new event source type is used for handling GDK events. A new source type is created by deriving from the GSource structure. The derived type of source is represented by a structure that has the GSource structure as a first element, and other elements specific to the new source type. To create an instance of the new source type, call g_source_new() passing in the size of the derived structure and a table of functions. These GSourceFuncs determine the behavior of the new source type. New source types basically interact with the main context in two ways. Their prepare function in GSourceFuncs can set a timeout to determine the maximum amount of time that the main loop will sleep before checking the source again. In addition, or as well, the source can add file descriptors to the set that the main context checks using g_source_add_poll(). <hr> Customizing the main loop iteration Single iterations of a GMainContext can be run with g_main_context_iteration(). In some cases, more detailed control of exactly how the details of the main loop work is desired, for instance, when integrating the GMainLoop with an external main loop. In such cases, you can call the component functions of g_main_context_iteration() directly. These functions are g_main_context_prepare(), g_main_context_query(), g_main_context_check() and g_main_context_dispatch(). The operation of these functions can best be seen in terms of a state diagram, as shown in Figure 1, “States of a Main Context”. Figure 1. States of a Main Context

Constructors

this
this(bool delegate() dlg, bool fireNow)

Creates a new idle cycle.

this
this(bool delegate() dlg, GPriority priority, bool fireNow)

Creates a new idle cycle.

Destructor

~this
~this()

Removes the idle from gtk

Members

Functions

addListener
void addListener(bool delegate() dlg, bool fireNow)

Adds a new delegate to this idle cycle

stop
void stop()

Static functions

add
uint add(GSourceFunc funct, void* data)

Adds a function to be called whenever there are no higher priority events pending to the default main loop. The function is given the default idle priority, G_PRIORITY_DEFAULT_IDLE. If the function returns FALSE it is automatically removed from the list of event sources and will not be called again. This internally creates a main loop source using g_idle_source_new() and attaches it to the main loop context using g_source_attach(). You can do these steps manually if you need greater control.

addFull
uint addFull(int priority, GSourceFunc funct, void* data, GDestroyNotify notify)

Adds a function to be called whenever there are no higher priority events pending. If the function returns FALSE it is automatically removed from the list of event sources and will not be called again. This internally creates a main loop source using g_idle_source_new() and attaches it to the main loop context using g_source_attach(). You can do these steps manually if you need greater control.

idleCallback
bool idleCallback(Idle idle)

The callback execution from glib

removeByData
int removeByData(void* data)

Removes the idle function with the given data.

sourceNew
Source sourceNew()

Creates a new idle source. The source will not initially be associated with any GMainContext and must be added to one with g_source_attach() before it will be executed. Note that the default priority for idle sources is G_PRIORITY_DEFAULT_IDLE, as compared to other sources which have a default priority of G_PRIORITY_DEFAULT.

Variables

idleID
uint idleID;

our idle ID

idleListeners
bool delegate()[] idleListeners;

Holds all idle delegates

Meta