Sets our main struct and passes it to the parent class.
Creates a new pixbuf loader object that always attempts to parse image data as if it were an image of type @image_type, instead of identifying the type automatically. Useful if you want an error if the image isn't the expected type, for loading image formats that can't be reliably identified by looking at the data, or if the user manually forces a specific type.
Creates a new pixbuf loader object.
This signal is emitted when the pixbuf loader has allocated the pixbuf in the desired size. After this signal is emitted, applications can call gdk_pixbuf_loader_get_pixbuf() to fetch the partially-loaded pixbuf.
This signal is emitted when a significant area of the image being loaded has been updated. Normally it means that a complete scanline has been read in, but it could be a different area as well. Applications can use this signal to know when to repaint areas of an image that is being loaded.
This signal is emitted when gdk_pixbuf_loader_close() is called. It can be used by different parts of an application to receive notification when an image loader is closed by the code that drives it.
This signal is emitted when the pixbuf loader has been fed the initial amount of data that is required to figure out the size of the image that it will create. Applications can call gdk_pixbuf_loader_set_size() in response to this signal to set the desired size to which the image should be scaled.
Informs a pixbuf loader that no further writes with gdk_pixbuf_loader_write() will occur, so that it can free its internal loading structures. Also, tries to parse any data that hasn't yet been parsed; if the remaining data is partial or corrupt, an error will be returned. If %FALSE is returned, @error will be set to an error from the #GDK_PIXBUF_ERROR or #G_FILE_ERROR domains. If you're just cancelling a load rather than expecting it to be finished, passing %NULL for @error to ignore it is reasonable.
Queries the #GdkPixbufAnimation that a pixbuf loader is currently creating. In general it only makes sense to call this function after the "area-prepared" signal has been emitted by the loader. If the loader doesn't have enough bytes yet (hasn't emitted the "area-prepared" signal) this function will return %NULL.
Obtains the available information about the format of the currently loading image file.
Queries the #GdkPixbuf that a pixbuf loader is currently creating. In general it only makes sense to call this function after the "area-prepared" signal has been emitted by the loader; this means that enough data has been read to know the size of the image that will be allocated. If the loader has not received enough data via gdk_pixbuf_loader_write(), then this function returns %NULL. The returned pixbuf will be the same in all future calls to the loader, so simply calling g_object_ref() should be sufficient to continue using it. Additionally, if the loader is an animation, it will return the "static image" of the animation (see gdk_pixbuf_animation_get_static_image()).
Get the main Gtk struct
the main Gtk struct as a void*
Causes the image to be scaled while it is loaded. The desired image size can be determined relative to the original size of the image by calling gdk_pixbuf_loader_set_size() from a signal handler for the ::size-prepared signal.
This will cause a pixbuf loader to parse the next @count bytes of an image. It will return %TRUE if the data was loaded successfully, and %FALSE if an error occurred. In the latter case, the loader will be closed, and will not accept further writes. If %FALSE is returned, @error will be set to an error from the #GDK_PIXBUF_ERROR or #G_FILE_ERROR domains.
This will cause a pixbuf loader to parse a buffer inside a #GBytes for an image. It will return %TRUE if the data was loaded successfully, and %FALSE if an error occurred. In the latter case, the loader will be closed, and will not accept further writes. If %FALSE is returned, @error will be set to an error from the #GDK_PIXBUF_ERROR or #G_FILE_ERROR domains.
the main Gtk struct
the main Gtk struct
Get the main Gtk struct
the main Gtk struct as a void*
Gets a D Object from the objects table of associations.
The notify signal is emitted on an object when one of its properties has been changed. Note that getting this signal doesn't guarantee that the value of the property has actually changed, it may also be emitted when the setter for the property is called to reinstate the previous value.
Find the #GParamSpec with the given name for an interface. Generally, the interface vtable passed in as @g_iface will be the default vtable from g_type_default_interface_ref(), or, if you know the interface has already been loaded, g_type_default_interface_peek().
Add a property to an interface; this is only useful for interfaces that are added to GObject-derived types. Adding a property to an interface forces all objects classes with that interface to have a compatible property. The compatible property could be a newly created #GParamSpec, but normally g_object_class_override_property() will be used so that the object class only needs to provide an implementation and inherits the property description, default value, bounds, and so forth from the interface property.
Lists the properties of an interface.Generally, the interface vtable passed in as @g_iface will be the default vtable from g_type_default_interface_ref(), or, if you know the interface has already been loaded, g_type_default_interface_peek().
Increases the reference count of the object by one and sets a callback to be called when all other references to the object are dropped, or when this is already the last reference to the object and another reference is established.
Adds a weak reference from weak_pointer to @object to indicate that the pointer located at @weak_pointer_location is only valid during the lifetime of @object. When the @object is finalized, @weak_pointer will be set to %NULL.
Creates a binding between @source_property on @source and @target_property on @target. Whenever the @source_property is changed the @target_property is updated using the same value. For instance:
Complete version of g_object_bind_property().
Creates a binding between @source_property on @source and @target_property on @target, allowing you to set the transformation functions to be used by the binding.
This is a variant of g_object_get_data() which returns a 'duplicate' of the value. @dup_func defines the meaning of 'duplicate' in this context, it could e.g. take a reference on a ref-counted object.
This is a variant of g_object_get_qdata() which returns a 'duplicate' of the value. @dup_func defines the meaning of 'duplicate' in this context, it could e.g. take a reference on a ref-counted object.
This function is intended for #GObject implementations to re-enforce a floating[floating-ref] object reference. Doing this is seldom required: all #GInitiallyUnowneds are created with a floating reference which usually just needs to be sunken by calling g_object_ref_sink().
Increases the freeze count on @object. If the freeze count is non-zero, the emission of "notify" signals on @object is stopped. The signals are queued until the freeze count is decreased to zero. Duplicate notifications are squashed so that at most one #GObject::notify signal is emitted for each property modified while the object is frozen.
Gets a named field from the objects table of associations (see g_object_set_data()).
Gets a property of an object.
This function gets back user data pointers stored via g_object_set_qdata().
Gets properties of an object.
Gets @n_properties properties for an @object. Obtained properties will be set to @values. All properties must be valid. Warnings will be emitted and undefined behaviour may result if invalid properties are passed in.
Checks whether @object has a floating[floating-ref] reference.
Emits a "notify" signal for the property @property_name on @object.
Emits a "notify" signal for the property specified by @pspec on @object.
Increases the reference count of @object.
Increase the reference count of @object, and possibly remove the floating[floating-ref] reference, if @object has a floating reference.
Removes a reference added with g_object_add_toggle_ref(). The reference count of the object is decreased by one.
Removes a weak reference from @object that was previously added using g_object_add_weak_pointer(). The @weak_pointer_location has to match the one used with g_object_add_weak_pointer().
Compares the user data for the key @key on @object with @oldval, and if they are the same, replaces @oldval with @newval.
Compares the user data for the key @quark on @object with @oldval, and if they are the same, replaces @oldval with @newval.
Releases all references to other objects. This can be used to break reference cycles.
Each object carries around a table of associations from strings to pointers. This function lets you set an association.
Like g_object_set_data() except it adds notification for when the association is destroyed, either by setting it to a different value or when the object is destroyed.
Sets a property on an object.
This sets an opaque, named pointer on an object. The name is specified through a #GQuark (retrived e.g. via g_quark_from_static_string()), and the pointer can be gotten back from the @object with g_object_get_qdata() until the @object is finalized. Setting a previously set user data pointer, overrides (frees) the old pointer set, using #NULL as pointer essentially removes the data stored.
This function works like g_object_set_qdata(), but in addition, a void (*destroy) (gpointer) function may be specified which is called with @data as argument when the @object is finalized, or the data is being overwritten by a call to g_object_set_qdata() with the same @quark.
Sets properties on an object.
Sets @n_properties properties for an @object. Properties to be set will be taken from @values. All properties must be valid. Warnings will be emitted and undefined behaviour may result if invalid properties are passed in.
Remove a specified datum from the object's data associations, without invoking the association's destroy handler.
This function gets back user data pointers stored via g_object_set_qdata() and removes the @data from object without invoking its destroy() function (if any was set). Usually, calling this function is only required to update user data pointers with a destroy notifier, for example: |[<!-- language="C" --> void object_add_to_user_list (GObject *object, const gchar *new_string) { // the quark, naming the object data GQuark quark_string_list = g_quark_from_static_string ("my-string-list"); // retrive the old string list GList *list = g_object_steal_qdata (object, quark_string_list);
Reverts the effect of a previous call to g_object_freeze_notify(). The freeze count is decreased on @object and when it reaches zero, queued "notify" signals are emitted.
Decreases the reference count of @object. When its reference count drops to 0, the object is finalized (i.e. its memory is freed).
This function essentially limits the life time of the @closure to the life time of the object. That is, when the object is finalized, the @closure is invalidated by calling g_closure_invalidate() on it, in order to prevent invocations of the closure with a finalized (nonexisting) object. Also, g_object_ref() and g_object_unref() are added as marshal guards to the @closure, to ensure that an extra reference count is held on @object during invocation of the @closure. Usually, this function will be called on closures that use this @object as closure data.
Adds a weak reference callback to an object. Weak references are used for notification when an object is finalized. They are called "weak references" because they allow you to safely hold a pointer to an object without calling g_object_ref() (g_object_ref() adds a strong reference, that is, forces the object to stay alive).
Removes a weak reference callback to an object.
Clears a reference to a #GObject.
The GdkPixbufLoader struct contains only private fields.