Allocator

Memory is usually created by allocators with a gst_allocator_alloc() method call. When NULL is used as the allocator, the default allocator will be used.

New allocators can be registered with gst_allocator_register(). Allocators are identified by name and can be retrieved with gst_allocator_find(). gst_allocator_set_default() can be used to change the default allocator.

New memory can be created with gst_memory_new_wrapped() that wraps the memory allocated elsewhere.

Last reviewed on 2012-07-09 (0.11.3)

Constructors

this
this(GstAllocator* gstAllocator)

Sets our main struct and passes it to the parent class

Members

Functions

alloc
Memory alloc(gsize size, GstAllocationParams* params)

Use allocator to allocate a new memory block with memory that is at least size big. The optional params can specify the prefix and padding for the memory. If NULL is passed, no flags, no extra prefix/padding and a default alignment is used. The prefix/padding will be filled with 0 if flags contains GST_MEMORY_FLAG_ZERO_PREFIXED and GST_MEMORY_FLAG_ZERO_PADDED respectively. When allocator is NULL, the default allocator will be used. The alignment in params is given as a bitmask so that align + 1 equals the amount of bytes to align to. For example, to align to 8 bytes, use an alignment of 7.

free
void free(Memory memory)

Free memory that was previously allocated with gst_allocator_alloc().

getAllocatorStruct
GstAllocator* getAllocatorStruct()
Undocumented in source. Be warned that the author may not have intended to support it.
getStruct
void* getStruct()

the main Gtk struct as a void*

setDefault
void setDefault()

Set the default allocator. This function takes ownership of allocator.

setStruct
void setStruct(GObject* obj)
Undocumented in source. Be warned that the author may not have intended to support it.

Static functions

find
Allocator find(string name)

Find a previously registered allocator with name. When name is NULL, the default allocator will be returned.

gstAllocationParamsCopy
GstAllocationParams* gstAllocationParamsCopy(GstAllocationParams* params)

Create a copy of params. Free-function: gst_allocation_params_free

gstAllocationParamsFree
void gstAllocationParamsFree(GstAllocationParams* params)

Free params

gstAllocationParamsInit
void gstAllocationParamsInit(GstAllocationParams* params)

Initialize params to its default values

gstMemoryNewWrapped
Memory gstMemoryNewWrapped(GstMemoryFlags flags, void* data, gsize maxsize, gsize offset, gsize size, void* userData, GDestroyNotify notify)

Allocate a new memory block that wraps the given data. The prefix/padding must be filled with 0 if flags contains GST_MEMORY_FLAG_ZERO_PREFIXED and GST_MEMORY_FLAG_ZERO_PADDED respectively.

register
void register(string name, Allocator allocator)

Registers the memory allocator with name. This function takes ownership of allocator.

Variables

gstAllocator
GstAllocator* gstAllocator;

the main Gtk struct

Inherited Members

From ObjectGst

gstObject
GstObject* gstObject;

the main Gtk struct

getObjectGstStruct
GstObject* getObjectGstStruct()
Undocumented in source. Be warned that the author may not have intended to support it.
getStruct
void* getStruct()

the main Gtk struct as a void*

setStruct
void setStruct(GObject* obj)
Undocumented in source. Be warned that the author may not have intended to support it.
connectedSignals
int[string] connectedSignals;
onDeepNotifyListeners
void delegate(ObjectGst, ParamSpec, ObjectGst)[] onDeepNotifyListeners;
Undocumented in source.
addOnDeepNotify
void addOnDeepNotify(void delegate(ObjectGst, ParamSpec, ObjectGst) dlg, ConnectFlags connectFlags)

The deep notify signal is used to be notified of property changes. It is typically attached to the toplevel bin to receive notifications from all the elements contained in that bin.

callBackDeepNotify
void callBackDeepNotify(GstObject* gstobjectStruct, GstObject* propObject, GParamSpec* prop, ObjectGst _objectGst)
Undocumented in source. Be warned that the author may not have intended to support it.
setName
int setName(string name)

Sets the name of object, or gives object a guaranteed unique name (if name is NULL). This function makes a copy of the provided name, so the caller retains ownership of the name it sent.

getName
string getName()

Returns a copy of the name of object. Caller should g_free() the return value after usage. For a nameless object, this returns NULL, which you can safely g_free() as well. Free-function: g_free

setParent
int setParent(ObjectGst parent)

Sets the parent of object to parent. The object's reference count will be incremented, and any floating reference will be removed (see gst_object_ref_sink()).

getParent
ObjectGst getParent()

Returns the parent of object. This function increases the refcount of the parent object so you should gst_object_unref() it after usage.

unparent
void unparent()

Clear the parent of object, removing the associated reference. This function decreases the refcount of object. MT safe. Grabs and releases object's lock.

defaultDeepNotify
void defaultDeepNotify(ObjectG object, ObjectGst orig, ParamSpec pspec, string[] excludedProps)

A default deep_notify signal callback for an object. The user data should contain a pointer to an array of strings that should be excluded from the notify. The default handler will print the new value of the property using g_print. MT safe. This function grabs and releases object's LOCK for getting its path string.

defaultError
void defaultError(ErrorG error, char dbug)

A default error function that uses g_printerr() to display the error message and the optional debug sting.. The default handler will simply print the error string using g_print.

checkUniqueness
int checkUniqueness(ListG list, string name)

Checks to see if there is any object named name in list. This function does not do any locking of any kind. You might want to protect the provided list with the lock of the owner of the list. This function will lock each GstObject in the list to compare the name, so be carefull when passing a list with a locked object.

hasAncestor
int hasAncestor(ObjectGst ancestor)

Check if object has an ancestor ancestor somewhere up in the hierarchy. One can e.g. check if a GstElement is inside a GstPipeline.

doref
void* doref(void* object)

Increments the reference count on object. This function does not take the lock on object because it relies on atomic refcounting. This object returns the input parameter to ease writing

unref
void unref(void* object)

Decrements the reference count on object. If reference count hits zero, destroy object. This function does not take the lock on object as it relies on atomic refcounting. The unref method should never be called with the LOCK held since this might deadlock the dispose function.

refSink
void* refSink(void* object)

Increase the reference count of object, and possibly remove the floating reference, if object has a floating reference. In other words, if the object is floating, then this call "assumes ownership" of the floating reference, converting it to a normal reference by clearing the floating flag while leaving the reference count unchanged. If the object is not floating, then this call adds a new normal reference increasing the reference count by one.

replace
int replace(ObjectGst oldobj, ObjectGst newobj)

Atomically modifies a pointer to point to a new object. The reference count of oldobj is decreased and the reference count of newobj is increased. Either newobj and the value pointed to by oldobj may be NULL.

getPathString
string getPathString()

Generates a string describing the path of object in the object hierarchy. Only useful (or used) for debugging. Free-function: g_free

suggestNextSync
GstClockTime suggestNextSync()

Returns a suggestion for timestamps where buffers should be split to get best controller results.

syncValues
int syncValues(GstClockTime timestamp)

Sets the properties of the object, according to the GstControlSources that (maybe) handle them and for the given timestamp. If this function fails, it is most likely the application developers fault. Most probably the control sources are not setup correctly.

hasActiveControlBindings
int hasActiveControlBindings()

Check if the object has an active controlled properties.

setControlBindingsDisabled
void setControlBindingsDisabled(int disabled)

This function is used to disable all controlled properties of the object for some time, i.e. gst_object_sync_values() will do nothing.

setControlBindingDisabled
void setControlBindingDisabled(string propertyName, int disabled)

This function is used to disable the GstController on a property for some time, i.e. gst_controller_sync_values() will do nothing for the property.

addControlBinding
int addControlBinding(ControlBinding binding)

Attach the GstControlBinding to the object. If there already was a GstControlBinding for this property it will be replaced. The object will take ownership of the binding.

getControlBinding
ControlBinding getControlBinding(string propertyName)

Gets the corresponding GstControlBinding for the property. This should be unreferenced again after use.

removeControlBinding
int removeControlBinding(ControlBinding binding)

Removes the corresponding GstControlBinding. If it was the last ref of the binding, it will be disposed.

getValue
Value getValue(string propertyName, GstClockTime timestamp)

Gets the value for the given controlled property at the requested time.

getValueArray
int getValueArray(string propertyName, GstClockTime timestamp, GstClockTime interval, void[] values)

Gets a number of values for the given controlled property starting at the requested time. The array values need to hold enough space for n_values of the same type as the objects property's type. This function is useful if one wants to e.g. draw a graph of the control curve or apply a control curve sample by sample. The values are unboxed and ready to be used. The similar function gst_object_get_g_value_array() returns the array as GValues and is better suites for bindings.

getGValueArray
int getGValueArray(string propertyName, GstClockTime timestamp, GstClockTime interval, uint nValues, Value values)

Gets a number of GValues for the given controlled property starting at the requested time. The array values need to hold enough space for n_values of GValue. This function is useful if one wants to e.g. draw a graph of the control curve or apply a control curve sample by sample.

getControlRate
GstClockTime getControlRate()

Obtain the control-rate for this object. Audio processing GstElement objects will use this rate to sub-divide their processing loop and call gst_object_sync_values() inbetween. The length of the processing segment should be up to control-rate nanoseconds. If the object is not under property control, this will return GST_CLOCK_TIME_NONE. This allows the element to avoid the sub-dividing. The control-rate is not expected to change if the element is in GST_STATE_PAUSED or GST_STATE_PLAYING.

setControlRate
void setControlRate(GstClockTime controlRate)

Change the control-rate for this object. Audio processing GstElement objects will use this rate to sub-divide their processing loop and call gst_object_sync_values() inbetween. The length of the processing segment should be up to control-rate nanoseconds. The control-rate should not change if the element is in GST_STATE_PAUSED or GST_STATE_PLAYING.

Meta