1 /* 2 * This file is part of gtkD. 3 * 4 * gtkD is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU Lesser General Public License 6 * as published by the Free Software Foundation; either version 3 7 * of the License, or (at your option) any later version, with 8 * some exceptions, please read the COPYING file. 9 * 10 * gtkD is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU Lesser General Public License for more details. 14 * 15 * You should have received a copy of the GNU Lesser General Public License 16 * along with gtkD; if not, write to the Free Software 17 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110, USA 18 */ 19 20 // generated automatically - do not change 21 // find conversion definition on APILookup.txt 22 // implement new conversion functionalities on the wrap.utils pakage 23 24 25 module glib.Variant; 26 27 private import glib.Bytes; 28 private import glib.ConstructionException; 29 private import glib.ErrorG; 30 private import glib.GException; 31 private import glib.Str; 32 private import glib.StringG; 33 private import glib.VariantIter; 34 private import glib.VariantType; 35 private import glib.c.functions; 36 public import glib.c.types; 37 public import gtkc.glibtypes; 38 private import gtkd.Loader; 39 40 41 /** 42 * #GVariant is a variant datatype; it can contain one or more values 43 * along with information about the type of the values. 44 * 45 * A #GVariant may contain simple types, like an integer, or a boolean value; 46 * or complex types, like an array of two strings, or a dictionary of key 47 * value pairs. A #GVariant is also immutable: once it's been created neither 48 * its type nor its content can be modified further. 49 * 50 * GVariant is useful whenever data needs to be serialized, for example when 51 * sending method parameters in DBus, or when saving settings using GSettings. 52 * 53 * When creating a new #GVariant, you pass the data you want to store in it 54 * along with a string representing the type of data you wish to pass to it. 55 * 56 * For instance, if you want to create a #GVariant holding an integer value you 57 * can use: 58 * 59 * |[<!-- language="C" --> 60 * GVariant *v = g_variant_new ("u", 40); 61 * ]| 62 * 63 * The string "u" in the first argument tells #GVariant that the data passed to 64 * the constructor (40) is going to be an unsigned integer. 65 * 66 * More advanced examples of #GVariant in use can be found in documentation for 67 * [GVariant format strings][gvariant-format-strings-pointers]. 68 * 69 * The range of possible values is determined by the type. 70 * 71 * The type system used by #GVariant is #GVariantType. 72 * 73 * #GVariant instances always have a type and a value (which are given 74 * at construction time). The type and value of a #GVariant instance 75 * can never change other than by the #GVariant itself being 76 * destroyed. A #GVariant cannot contain a pointer. 77 * 78 * #GVariant is reference counted using g_variant_ref() and 79 * g_variant_unref(). #GVariant also has floating reference counts -- 80 * see g_variant_ref_sink(). 81 * 82 * #GVariant is completely threadsafe. A #GVariant instance can be 83 * concurrently accessed in any way from any number of threads without 84 * problems. 85 * 86 * #GVariant is heavily optimised for dealing with data in serialised 87 * form. It works particularly well with data located in memory-mapped 88 * files. It can perform nearly all deserialisation operations in a 89 * small constant time, usually touching only a single memory page. 90 * Serialised #GVariant data can also be sent over the network. 91 * 92 * #GVariant is largely compatible with D-Bus. Almost all types of 93 * #GVariant instances can be sent over D-Bus. See #GVariantType for 94 * exceptions. (However, #GVariant's serialisation format is not the same 95 * as the serialisation format of a D-Bus message body: use #GDBusMessage, 96 * in the gio library, for those.) 97 * 98 * For space-efficiency, the #GVariant serialisation format does not 99 * automatically include the variant's length, type or endianness, 100 * which must either be implied from context (such as knowledge that a 101 * particular file format always contains a little-endian 102 * %G_VARIANT_TYPE_VARIANT which occupies the whole length of the file) 103 * or supplied out-of-band (for instance, a length, type and/or endianness 104 * indicator could be placed at the beginning of a file, network message 105 * or network stream). 106 * 107 * A #GVariant's size is limited mainly by any lower level operating 108 * system constraints, such as the number of bits in #gsize. For 109 * example, it is reasonable to have a 2GB file mapped into memory 110 * with #GMappedFile, and call g_variant_new_from_data() on it. 111 * 112 * For convenience to C programmers, #GVariant features powerful 113 * varargs-based value construction and destruction. This feature is 114 * designed to be embedded in other libraries. 115 * 116 * There is a Python-inspired text language for describing #GVariant 117 * values. #GVariant includes a printer for this language and a parser 118 * with type inferencing. 119 * 120 * ## Memory Use 121 * 122 * #GVariant tries to be quite efficient with respect to memory use. 123 * This section gives a rough idea of how much memory is used by the 124 * current implementation. The information here is subject to change 125 * in the future. 126 * 127 * The memory allocated by #GVariant can be grouped into 4 broad 128 * purposes: memory for serialised data, memory for the type 129 * information cache, buffer management memory and memory for the 130 * #GVariant structure itself. 131 * 132 * ## Serialised Data Memory 133 * 134 * This is the memory that is used for storing GVariant data in 135 * serialised form. This is what would be sent over the network or 136 * what would end up on disk, not counting any indicator of the 137 * endianness, or of the length or type of the top-level variant. 138 * 139 * The amount of memory required to store a boolean is 1 byte. 16, 140 * 32 and 64 bit integers and double precision floating point numbers 141 * use their "natural" size. Strings (including object path and 142 * signature strings) are stored with a nul terminator, and as such 143 * use the length of the string plus 1 byte. 144 * 145 * Maybe types use no space at all to represent the null value and 146 * use the same amount of space (sometimes plus one byte) as the 147 * equivalent non-maybe-typed value to represent the non-null case. 148 * 149 * Arrays use the amount of space required to store each of their 150 * members, concatenated. Additionally, if the items stored in an 151 * array are not of a fixed-size (ie: strings, other arrays, etc) 152 * then an additional framing offset is stored for each item. The 153 * size of this offset is either 1, 2 or 4 bytes depending on the 154 * overall size of the container. Additionally, extra padding bytes 155 * are added as required for alignment of child values. 156 * 157 * Tuples (including dictionary entries) use the amount of space 158 * required to store each of their members, concatenated, plus one 159 * framing offset (as per arrays) for each non-fixed-sized item in 160 * the tuple, except for the last one. Additionally, extra padding 161 * bytes are added as required for alignment of child values. 162 * 163 * Variants use the same amount of space as the item inside of the 164 * variant, plus 1 byte, plus the length of the type string for the 165 * item inside the variant. 166 * 167 * As an example, consider a dictionary mapping strings to variants. 168 * In the case that the dictionary is empty, 0 bytes are required for 169 * the serialisation. 170 * 171 * If we add an item "width" that maps to the int32 value of 500 then 172 * we will use 4 byte to store the int32 (so 6 for the variant 173 * containing it) and 6 bytes for the string. The variant must be 174 * aligned to 8 after the 6 bytes of the string, so that's 2 extra 175 * bytes. 6 (string) + 2 (padding) + 6 (variant) is 14 bytes used 176 * for the dictionary entry. An additional 1 byte is added to the 177 * array as a framing offset making a total of 15 bytes. 178 * 179 * If we add another entry, "title" that maps to a nullable string 180 * that happens to have a value of null, then we use 0 bytes for the 181 * null value (and 3 bytes for the variant to contain it along with 182 * its type string) plus 6 bytes for the string. Again, we need 2 183 * padding bytes. That makes a total of 6 + 2 + 3 = 11 bytes. 184 * 185 * We now require extra padding between the two items in the array. 186 * After the 14 bytes of the first item, that's 2 bytes required. 187 * We now require 2 framing offsets for an extra two 188 * bytes. 14 + 2 + 11 + 2 = 29 bytes to encode the entire two-item 189 * dictionary. 190 * 191 * ## Type Information Cache 192 * 193 * For each GVariant type that currently exists in the program a type 194 * information structure is kept in the type information cache. The 195 * type information structure is required for rapid deserialisation. 196 * 197 * Continuing with the above example, if a #GVariant exists with the 198 * type "a{sv}" then a type information struct will exist for 199 * "a{sv}", "{sv}", "s", and "v". Multiple uses of the same type 200 * will share the same type information. Additionally, all 201 * single-digit types are stored in read-only static memory and do 202 * not contribute to the writable memory footprint of a program using 203 * #GVariant. 204 * 205 * Aside from the type information structures stored in read-only 206 * memory, there are two forms of type information. One is used for 207 * container types where there is a single element type: arrays and 208 * maybe types. The other is used for container types where there 209 * are multiple element types: tuples and dictionary entries. 210 * 211 * Array type info structures are 6 * sizeof (void *), plus the 212 * memory required to store the type string itself. This means that 213 * on 32-bit systems, the cache entry for "a{sv}" would require 30 214 * bytes of memory (plus malloc overhead). 215 * 216 * Tuple type info structures are 6 * sizeof (void *), plus 4 * 217 * sizeof (void *) for each item in the tuple, plus the memory 218 * required to store the type string itself. A 2-item tuple, for 219 * example, would have a type information structure that consumed 220 * writable memory in the size of 14 * sizeof (void *) (plus type 221 * string) This means that on 32-bit systems, the cache entry for 222 * "{sv}" would require 61 bytes of memory (plus malloc overhead). 223 * 224 * This means that in total, for our "a{sv}" example, 91 bytes of 225 * type information would be allocated. 226 * 227 * The type information cache, additionally, uses a #GHashTable to 228 * store and lookup the cached items and stores a pointer to this 229 * hash table in static storage. The hash table is freed when there 230 * are zero items in the type cache. 231 * 232 * Although these sizes may seem large it is important to remember 233 * that a program will probably only have a very small number of 234 * different types of values in it and that only one type information 235 * structure is required for many different values of the same type. 236 * 237 * ## Buffer Management Memory 238 * 239 * #GVariant uses an internal buffer management structure to deal 240 * with the various different possible sources of serialised data 241 * that it uses. The buffer is responsible for ensuring that the 242 * correct call is made when the data is no longer in use by 243 * #GVariant. This may involve a g_free() or a g_slice_free() or 244 * even g_mapped_file_unref(). 245 * 246 * One buffer management structure is used for each chunk of 247 * serialised data. The size of the buffer management structure 248 * is 4 * (void *). On 32-bit systems, that's 16 bytes. 249 * 250 * ## GVariant structure 251 * 252 * The size of a #GVariant structure is 6 * (void *). On 32-bit 253 * systems, that's 24 bytes. 254 * 255 * #GVariant structures only exist if they are explicitly created 256 * with API calls. For example, if a #GVariant is constructed out of 257 * serialised data for the example given above (with the dictionary) 258 * then although there are 9 individual values that comprise the 259 * entire dictionary (two keys, two values, two variants containing 260 * the values, two dictionary entries, plus the dictionary itself), 261 * only 1 #GVariant instance exists -- the one referring to the 262 * dictionary. 263 * 264 * If calls are made to start accessing the other values then 265 * #GVariant instances will exist for those values only for as long 266 * as they are in use (ie: until you call g_variant_unref()). The 267 * type information is shared. The serialised data and the buffer 268 * management structure for that serialised data is shared by the 269 * child. 270 * 271 * ## Summary 272 * 273 * To put the entire example together, for our dictionary mapping 274 * strings to variants (with two entries, as given above), we are 275 * using 91 bytes of memory for type information, 29 bytes of memory 276 * for the serialised data, 16 bytes for buffer management and 24 277 * bytes for the #GVariant instance, or a total of 160 bytes, plus 278 * malloc overhead. If we were to use g_variant_get_child_value() to 279 * access the two dictionary entries, we would use an additional 48 280 * bytes. If we were to have other dictionaries of the same type, we 281 * would use more memory for the serialised data and buffer 282 * management for those dictionaries, but the type information would 283 * be shared. 284 * 285 * Since: 2.24 286 */ 287 public class Variant 288 { 289 /** the main Gtk struct */ 290 protected GVariant* gVariant; 291 protected bool ownedRef; 292 293 /** Get the main Gtk struct */ 294 public GVariant* getVariantStruct(bool transferOwnership = false) 295 { 296 if (transferOwnership) 297 ownedRef = false; 298 return gVariant; 299 } 300 301 /** the main Gtk struct as a void* */ 302 protected void* getStruct() 303 { 304 return cast(void*)gVariant; 305 } 306 307 /** 308 * Sets our main struct and passes it to the parent class. 309 */ 310 public this (GVariant* gVariant, bool ownedRef = false) 311 { 312 this.gVariant = gVariant; 313 this.ownedRef = ownedRef; 314 } 315 316 ~this () 317 { 318 if ( Linker.isLoaded(LIBRARY_GLIB) && ownedRef ) 319 g_variant_unref(gVariant); 320 } 321 322 /** 323 * Creates a DBus object path GVariant with the contents of string. 324 * string must be a valid DBus object path. 325 * Use Variant.isObjectPath() if you're not sure. 326 * 327 * Since: 2.24 328 * 329 * Throws: ConstructionException GTK+ fails to create the object. 330 */ 331 public static Variant fromObjectPath(string path) 332 { 333 auto p = g_variant_new_object_path(Str.toStringz(path)); 334 if(p is null) 335 { 336 throw new ConstructionException("null returned by g_variant_new_object_path"); 337 } 338 return new Variant(cast(GVariant*) p); 339 } 340 341 /** 342 * Creates a DBus type signature GVariant with the contents of string. 343 * string must be a valid DBus type signature. 344 * Use Variant.isSignature() if you're not sure. 345 * 346 * Since: 2.24 347 * 348 * Throws: ConstructionException GTK+ fails to create the object. 349 */ 350 public static Variant fromSignature(string signature) 351 { 352 auto p = g_variant_new_signature(Str.toStringz(signature)); 353 if(p is null) 354 { 355 throw new ConstructionException("null returned by g_variant_new_signature"); 356 } 357 return new Variant(cast(GVariant*) p); 358 } 359 360 /** 361 * Creates an array-of-bytes GVariant with the contents of string. 362 * This function is just like new Variant(string) except that the string 363 * need not be valid utf8. 364 * 365 * The nul terminator character at the end of the string is stored in 366 * the array. 367 * 368 * Throws: ConstructionException GTK+ fails to create the object. 369 */ 370 public static Variant fromByteString(string byteString) 371 { 372 auto p = g_variant_new_bytestring(Str.toStringz(byteString)); 373 if(p is null) 374 { 375 throw new ConstructionException("null returned by g_variant_new_bytestring"); 376 } 377 return new Variant(cast(GVariant*) p); 378 } 379 380 /** 381 * Constructs an array of object paths Variant from the given array 382 * of strings. 383 * 384 * Each string must be a valid Variant object path. 385 * 386 * Since: 2.30 387 * 388 * Params: 389 * strv = an array of strings. 390 * 391 * Throws: ConstructionException GTK+ fails to create the object. 392 */ 393 public static Variant fromObjv(string[] strv) 394 { 395 // GVariant * g_variant_new_objv (const gchar * const *strv, gssize length); 396 auto p = g_variant_new_objv(Str.toStringzArray(strv), strv.length); 397 if(p is null) 398 { 399 throw new ConstructionException("null returned by g_variant_new_objv(strv, length)"); 400 } 401 return new Variant(cast(GVariant*) p); 402 } 403 404 /** 405 * Constructs an array of bytestring GVariant from the given array of 406 * strings. If length is -1 then strv is null-terminated. 407 * 408 * Since: 2.26 409 * 410 * Params: 411 * strv = an array of strings. 412 * 413 * Throws: ConstructionException GTK+ fails to create the object. 414 */ 415 public static Variant fromByteStringArray(string[] strv) 416 { 417 auto p = g_variant_new_bytestring_array(Str.toStringzArray(strv), strv.length); 418 if(p is null) 419 { 420 throw new ConstructionException("null returned by g_variant_new_bytestring_array(strv, length)"); 421 } 422 return new Variant(cast(GVariant*) p); 423 } 424 425 /** 426 */ 427 428 /** 429 * Creates a new #GVariant array from @children. 430 * 431 * @child_type must be non-%NULL if @n_children is zero. Otherwise, the 432 * child type is determined by inspecting the first element of the 433 * @children array. If @child_type is non-%NULL then it must be a 434 * definite type. 435 * 436 * The items of the array are taken from the @children array. No entry 437 * in the @children array may be %NULL. 438 * 439 * All items in the array must have the same type, which must be the 440 * same as @child_type, if given. 441 * 442 * If the @children are floating references (see g_variant_ref_sink()), the 443 * new instance takes ownership of them as if via g_variant_ref_sink(). 444 * 445 * Params: 446 * childType = the element type of the new array 447 * children = an array of 448 * #GVariant pointers, the children 449 * 450 * Returns: a floating reference to a new #GVariant array 451 * 452 * Since: 2.24 453 * 454 * Throws: ConstructionException GTK+ fails to create the object. 455 */ 456 public this(VariantType childType, Variant[] children) 457 { 458 GVariant*[] childrenArray = new GVariant*[children.length]; 459 for ( int i = 0; i < children.length; i++ ) 460 { 461 childrenArray[i] = children[i].getVariantStruct(); 462 } 463 464 auto p = g_variant_new_array((childType is null) ? null : childType.getVariantTypeStruct(), childrenArray.ptr, cast(size_t)children.length); 465 466 if(p is null) 467 { 468 throw new ConstructionException("null returned by new_array"); 469 } 470 471 this(cast(GVariant*) p); 472 } 473 474 /** 475 * Creates a new boolean #GVariant instance -- either %TRUE or %FALSE. 476 * 477 * Params: 478 * value = a #gboolean value 479 * 480 * Returns: a floating reference to a new boolean #GVariant instance 481 * 482 * Since: 2.24 483 * 484 * Throws: ConstructionException GTK+ fails to create the object. 485 */ 486 public this(bool value) 487 { 488 auto p = g_variant_new_boolean(value); 489 490 if(p is null) 491 { 492 throw new ConstructionException("null returned by new_boolean"); 493 } 494 495 this(cast(GVariant*) p); 496 } 497 498 /** 499 * Creates a new byte #GVariant instance. 500 * 501 * Params: 502 * value = a #guint8 value 503 * 504 * Returns: a floating reference to a new byte #GVariant instance 505 * 506 * Since: 2.24 507 * 508 * Throws: ConstructionException GTK+ fails to create the object. 509 */ 510 public this(char value) 511 { 512 auto p = g_variant_new_byte(value); 513 514 if(p is null) 515 { 516 throw new ConstructionException("null returned by new_byte"); 517 } 518 519 this(cast(GVariant*) p); 520 } 521 522 /** 523 * Creates a new dictionary entry #GVariant. @key and @value must be 524 * non-%NULL. @key must be a value of a basic type (ie: not a container). 525 * 526 * If the @key or @value are floating references (see g_variant_ref_sink()), 527 * the new instance takes ownership of them as if via g_variant_ref_sink(). 528 * 529 * Params: 530 * key = a basic #GVariant, the key 531 * value = a #GVariant, the value 532 * 533 * Returns: a floating reference to a new dictionary entry #GVariant 534 * 535 * Since: 2.24 536 * 537 * Throws: ConstructionException GTK+ fails to create the object. 538 */ 539 public this(Variant key, Variant value) 540 { 541 auto p = g_variant_new_dict_entry((key is null) ? null : key.getVariantStruct(), (value is null) ? null : value.getVariantStruct()); 542 543 if(p is null) 544 { 545 throw new ConstructionException("null returned by new_dict_entry"); 546 } 547 548 this(cast(GVariant*) p); 549 } 550 551 /** 552 * Creates a new double #GVariant instance. 553 * 554 * Params: 555 * value = a #gdouble floating point value 556 * 557 * Returns: a floating reference to a new double #GVariant instance 558 * 559 * Since: 2.24 560 * 561 * Throws: ConstructionException GTK+ fails to create the object. 562 */ 563 public this(double value) 564 { 565 auto p = g_variant_new_double(value); 566 567 if(p is null) 568 { 569 throw new ConstructionException("null returned by new_double"); 570 } 571 572 this(cast(GVariant*) p); 573 } 574 575 /** 576 * Constructs a new array #GVariant instance, where the elements are 577 * of @element_type type. 578 * 579 * @elements must be an array with fixed-sized elements. Numeric types are 580 * fixed-size as are tuples containing only other fixed-sized types. 581 * 582 * @element_size must be the size of a single element in the array. 583 * For example, if calling this function for an array of 32-bit integers, 584 * you might say sizeof(gint32). This value isn't used except for the purpose 585 * of a double-check that the form of the serialised data matches the caller's 586 * expectation. 587 * 588 * @n_elements must be the length of the @elements array. 589 * 590 * Params: 591 * elementType = the #GVariantType of each element 592 * elements = a pointer to the fixed array of contiguous elements 593 * nElements = the number of elements 594 * elementSize = the size of each element 595 * 596 * Returns: a floating reference to a new array #GVariant instance 597 * 598 * Since: 2.32 599 * 600 * Throws: ConstructionException GTK+ fails to create the object. 601 */ 602 public this(VariantType elementType, void* elements, size_t nElements, size_t elementSize) 603 { 604 auto p = g_variant_new_fixed_array((elementType is null) ? null : elementType.getVariantTypeStruct(), elements, nElements, elementSize); 605 606 if(p is null) 607 { 608 throw new ConstructionException("null returned by new_fixed_array"); 609 } 610 611 this(cast(GVariant*) p); 612 } 613 614 /** 615 * Constructs a new serialised-mode #GVariant instance. This is the 616 * inner interface for creation of new serialised values that gets 617 * called from various functions in gvariant.c. 618 * 619 * A reference is taken on @bytes. 620 * 621 * Params: 622 * type = a #GVariantType 623 * bytes = a #GBytes 624 * trusted = if the contents of @bytes are trusted 625 * 626 * Returns: a new #GVariant with a floating reference 627 * 628 * Since: 2.36 629 * 630 * Throws: ConstructionException GTK+ fails to create the object. 631 */ 632 public this(VariantType type, Bytes bytes, bool trusted) 633 { 634 auto p = g_variant_new_from_bytes((type is null) ? null : type.getVariantTypeStruct(), (bytes is null) ? null : bytes.getBytesStruct(), trusted); 635 636 if(p is null) 637 { 638 throw new ConstructionException("null returned by new_from_bytes"); 639 } 640 641 this(cast(GVariant*) p); 642 } 643 644 /** 645 * Creates a new #GVariant instance from serialised data. 646 * 647 * @type is the type of #GVariant instance that will be constructed. 648 * The interpretation of @data depends on knowing the type. 649 * 650 * @data is not modified by this function and must remain valid with an 651 * unchanging value until such a time as @notify is called with 652 * @user_data. If the contents of @data change before that time then 653 * the result is undefined. 654 * 655 * If @data is trusted to be serialised data in normal form then 656 * @trusted should be %TRUE. This applies to serialised data created 657 * within this process or read from a trusted location on the disk (such 658 * as a file installed in /usr/lib alongside your application). You 659 * should set trusted to %FALSE if @data is read from the network, a 660 * file in the user's home directory, etc. 661 * 662 * If @data was not stored in this machine's native endianness, any multi-byte 663 * numeric values in the returned variant will also be in non-native 664 * endianness. g_variant_byteswap() can be used to recover the original values. 665 * 666 * @notify will be called with @user_data when @data is no longer 667 * needed. The exact time of this call is unspecified and might even be 668 * before this function returns. 669 * 670 * Params: 671 * type = a definite #GVariantType 672 * data = the serialised data 673 * trusted = %TRUE if @data is definitely in normal form 674 * notify = function to call when @data is no longer needed 675 * userData = data for @notify 676 * 677 * Returns: a new floating #GVariant of type @type 678 * 679 * Since: 2.24 680 * 681 * Throws: ConstructionException GTK+ fails to create the object. 682 */ 683 public this(VariantType type, ubyte[] data, bool trusted, GDestroyNotify notify, void* userData) 684 { 685 auto p = g_variant_new_from_data((type is null) ? null : type.getVariantTypeStruct(), data.ptr, cast(size_t)data.length, trusted, notify, userData); 686 687 if(p is null) 688 { 689 throw new ConstructionException("null returned by new_from_data"); 690 } 691 692 this(cast(GVariant*) p); 693 } 694 695 /** 696 * Creates a new int16 #GVariant instance. 697 * 698 * Params: 699 * value = a #gint16 value 700 * 701 * Returns: a floating reference to a new int16 #GVariant instance 702 * 703 * Since: 2.24 704 * 705 * Throws: ConstructionException GTK+ fails to create the object. 706 */ 707 public this(short value) 708 { 709 auto p = g_variant_new_int16(value); 710 711 if(p is null) 712 { 713 throw new ConstructionException("null returned by new_int16"); 714 } 715 716 this(cast(GVariant*) p); 717 } 718 719 /** 720 * Creates a new int32 #GVariant instance. 721 * 722 * Params: 723 * value = a #gint32 value 724 * 725 * Returns: a floating reference to a new int32 #GVariant instance 726 * 727 * Since: 2.24 728 * 729 * Throws: ConstructionException GTK+ fails to create the object. 730 */ 731 public this(int value) 732 { 733 auto p = g_variant_new_int32(value); 734 735 if(p is null) 736 { 737 throw new ConstructionException("null returned by new_int32"); 738 } 739 740 this(cast(GVariant*) p); 741 } 742 743 /** 744 * Creates a new int64 #GVariant instance. 745 * 746 * Params: 747 * value = a #gint64 value 748 * 749 * Returns: a floating reference to a new int64 #GVariant instance 750 * 751 * Since: 2.24 752 * 753 * Throws: ConstructionException GTK+ fails to create the object. 754 */ 755 public this(long value) 756 { 757 auto p = g_variant_new_int64(value); 758 759 if(p is null) 760 { 761 throw new ConstructionException("null returned by new_int64"); 762 } 763 764 this(cast(GVariant*) p); 765 } 766 767 /** 768 * Depending on if @child is %NULL, either wraps @child inside of a 769 * maybe container or creates a Nothing instance for the given @type. 770 * 771 * At least one of @child_type and @child must be non-%NULL. 772 * If @child_type is non-%NULL then it must be a definite type. 773 * If they are both non-%NULL then @child_type must be the type 774 * of @child. 775 * 776 * If @child is a floating reference (see g_variant_ref_sink()), the new 777 * instance takes ownership of @child. 778 * 779 * Params: 780 * childType = the #GVariantType of the child, or %NULL 781 * child = the child value, or %NULL 782 * 783 * Returns: a floating reference to a new #GVariant maybe instance 784 * 785 * Since: 2.24 786 * 787 * Throws: ConstructionException GTK+ fails to create the object. 788 */ 789 public this(VariantType childType, Variant child) 790 { 791 auto p = g_variant_new_maybe((childType is null) ? null : childType.getVariantTypeStruct(), (child is null) ? null : child.getVariantStruct()); 792 793 if(p is null) 794 { 795 throw new ConstructionException("null returned by new_maybe"); 796 } 797 798 this(cast(GVariant*) p); 799 } 800 801 /** 802 * Parses @format and returns the result. 803 * 804 * This is the version of g_variant_new_parsed() intended to be used 805 * from libraries. 806 * 807 * The return value will be floating if it was a newly created GVariant 808 * instance. In the case that @format simply specified the collection 809 * of a #GVariant pointer (eg: @format was "%*") then the collected 810 * #GVariant pointer will be returned unmodified, without adding any 811 * additional references. 812 * 813 * Note that the arguments in @app must be of the correct width for their types 814 * specified in @format when collected into the #va_list. See 815 * the [GVariant varargs documentation][gvariant-varargs]. 816 * 817 * In order to behave correctly in all cases it is necessary for the 818 * calling function to g_variant_ref_sink() the return result before 819 * returning control to the user that originally provided the pointer. 820 * At this point, the caller will have their own full reference to the 821 * result. This can also be done by adding the result to a container, 822 * or by passing it to another g_variant_new() call. 823 * 824 * Params: 825 * format = a text format #GVariant 826 * app = a pointer to a #va_list 827 * 828 * Returns: a new, usually floating, #GVariant 829 * 830 * Throws: ConstructionException GTK+ fails to create the object. 831 */ 832 public this(string format, void** app) 833 { 834 auto p = g_variant_new_parsed_va(Str.toStringz(format), app); 835 836 if(p is null) 837 { 838 throw new ConstructionException("null returned by new_parsed_va"); 839 } 840 841 this(cast(GVariant*) p); 842 } 843 844 /** 845 * Creates a string #GVariant with the contents of @string. 846 * 847 * @string must be valid UTF-8, and must not be %NULL. To encode 848 * potentially-%NULL strings, use g_variant_new() with `ms` as the 849 * [format string][gvariant-format-strings-maybe-types]. 850 * 851 * Params: 852 * str = a normal UTF-8 nul-terminated string 853 * 854 * Returns: a floating reference to a new string #GVariant instance 855 * 856 * Since: 2.24 857 * 858 * Throws: ConstructionException GTK+ fails to create the object. 859 */ 860 public this(string str) 861 { 862 auto p = g_variant_new_string(Str.toStringz(str)); 863 864 if(p is null) 865 { 866 throw new ConstructionException("null returned by new_string"); 867 } 868 869 this(cast(GVariant*) p); 870 } 871 872 /** 873 * Constructs an array of strings #GVariant from the given array of 874 * strings. 875 * 876 * If @length is -1 then @strv is %NULL-terminated. 877 * 878 * Params: 879 * strv = an array of strings 880 * 881 * Returns: a new floating #GVariant instance 882 * 883 * Since: 2.24 884 * 885 * Throws: ConstructionException GTK+ fails to create the object. 886 */ 887 public this(string[] strv) 888 { 889 auto p = g_variant_new_strv(Str.toStringzArray(strv), cast(ptrdiff_t)strv.length); 890 891 if(p is null) 892 { 893 throw new ConstructionException("null returned by new_strv"); 894 } 895 896 this(cast(GVariant*) p); 897 } 898 899 /** 900 * Creates a new tuple #GVariant out of the items in @children. The 901 * type is determined from the types of @children. No entry in the 902 * @children array may be %NULL. 903 * 904 * If @n_children is 0 then the unit tuple is constructed. 905 * 906 * If the @children are floating references (see g_variant_ref_sink()), the 907 * new instance takes ownership of them as if via g_variant_ref_sink(). 908 * 909 * Params: 910 * children = the items to make the tuple out of 911 * 912 * Returns: a floating reference to a new #GVariant tuple 913 * 914 * Since: 2.24 915 * 916 * Throws: ConstructionException GTK+ fails to create the object. 917 */ 918 public this(Variant[] children) 919 { 920 GVariant*[] childrenArray = new GVariant*[children.length]; 921 for ( int i = 0; i < children.length; i++ ) 922 { 923 childrenArray[i] = children[i].getVariantStruct(); 924 } 925 926 auto p = g_variant_new_tuple(childrenArray.ptr, cast(size_t)children.length); 927 928 if(p is null) 929 { 930 throw new ConstructionException("null returned by new_tuple"); 931 } 932 933 this(cast(GVariant*) p); 934 } 935 936 /** 937 * Creates a new uint16 #GVariant instance. 938 * 939 * Params: 940 * value = a #guint16 value 941 * 942 * Returns: a floating reference to a new uint16 #GVariant instance 943 * 944 * Since: 2.24 945 * 946 * Throws: ConstructionException GTK+ fails to create the object. 947 */ 948 public this(ushort value) 949 { 950 auto p = g_variant_new_uint16(value); 951 952 if(p is null) 953 { 954 throw new ConstructionException("null returned by new_uint16"); 955 } 956 957 this(cast(GVariant*) p); 958 } 959 960 /** 961 * Creates a new uint32 #GVariant instance. 962 * 963 * Params: 964 * value = a #guint32 value 965 * 966 * Returns: a floating reference to a new uint32 #GVariant instance 967 * 968 * Since: 2.24 969 * 970 * Throws: ConstructionException GTK+ fails to create the object. 971 */ 972 public this(uint value) 973 { 974 auto p = g_variant_new_uint32(value); 975 976 if(p is null) 977 { 978 throw new ConstructionException("null returned by new_uint32"); 979 } 980 981 this(cast(GVariant*) p); 982 } 983 984 /** 985 * Creates a new uint64 #GVariant instance. 986 * 987 * Params: 988 * value = a #guint64 value 989 * 990 * Returns: a floating reference to a new uint64 #GVariant instance 991 * 992 * Since: 2.24 993 * 994 * Throws: ConstructionException GTK+ fails to create the object. 995 */ 996 public this(ulong value) 997 { 998 auto p = g_variant_new_uint64(value); 999 1000 if(p is null) 1001 { 1002 throw new ConstructionException("null returned by new_uint64"); 1003 } 1004 1005 this(cast(GVariant*) p); 1006 } 1007 1008 /** 1009 * This function is intended to be used by libraries based on 1010 * #GVariant that want to provide g_variant_new()-like functionality 1011 * to their users. 1012 * 1013 * The API is more general than g_variant_new() to allow a wider range 1014 * of possible uses. 1015 * 1016 * @format_string must still point to a valid format string, but it only 1017 * needs to be nul-terminated if @endptr is %NULL. If @endptr is 1018 * non-%NULL then it is updated to point to the first character past the 1019 * end of the format string. 1020 * 1021 * @app is a pointer to a #va_list. The arguments, according to 1022 * @format_string, are collected from this #va_list and the list is left 1023 * pointing to the argument following the last. 1024 * 1025 * Note that the arguments in @app must be of the correct width for their 1026 * types specified in @format_string when collected into the #va_list. 1027 * See the [GVariant varargs documentation][gvariant-varargs]. 1028 * 1029 * These two generalisations allow mixing of multiple calls to 1030 * g_variant_new_va() and g_variant_get_va() within a single actual 1031 * varargs call by the user. 1032 * 1033 * The return value will be floating if it was a newly created GVariant 1034 * instance (for example, if the format string was "(ii)"). In the case 1035 * that the format_string was '*', '?', 'r', or a format starting with 1036 * '@' then the collected #GVariant pointer will be returned unmodified, 1037 * without adding any additional references. 1038 * 1039 * In order to behave correctly in all cases it is necessary for the 1040 * calling function to g_variant_ref_sink() the return result before 1041 * returning control to the user that originally provided the pointer. 1042 * At this point, the caller will have their own full reference to the 1043 * result. This can also be done by adding the result to a container, 1044 * or by passing it to another g_variant_new() call. 1045 * 1046 * Params: 1047 * formatString = a string that is prefixed with a format string 1048 * endptr = location to store the end pointer, 1049 * or %NULL 1050 * app = a pointer to a #va_list 1051 * 1052 * Returns: a new, usually floating, #GVariant 1053 * 1054 * Since: 2.24 1055 * 1056 * Throws: ConstructionException GTK+ fails to create the object. 1057 */ 1058 public this(string formatString, string[] endptr, void** app) 1059 { 1060 auto p = g_variant_new_va(Str.toStringz(formatString), Str.toStringzArray(endptr), app); 1061 1062 if(p is null) 1063 { 1064 throw new ConstructionException("null returned by new_va"); 1065 } 1066 1067 this(cast(GVariant*) p); 1068 } 1069 1070 /** 1071 * Boxes @value. The result is a #GVariant instance representing a 1072 * variant containing the original value. 1073 * 1074 * If @child is a floating reference (see g_variant_ref_sink()), the new 1075 * instance takes ownership of @child. 1076 * 1077 * Params: 1078 * value = a #GVariant instance 1079 * 1080 * Returns: a floating reference to a new variant #GVariant instance 1081 * 1082 * Since: 2.24 1083 * 1084 * Throws: ConstructionException GTK+ fails to create the object. 1085 */ 1086 public this(Variant value) 1087 { 1088 auto p = g_variant_new_variant((value is null) ? null : value.getVariantStruct()); 1089 1090 if(p is null) 1091 { 1092 throw new ConstructionException("null returned by new_variant"); 1093 } 1094 1095 this(cast(GVariant*) p); 1096 } 1097 1098 /** 1099 * Performs a byteswapping operation on the contents of @value. The 1100 * result is that all multi-byte numeric data contained in @value is 1101 * byteswapped. That includes 16, 32, and 64bit signed and unsigned 1102 * integers as well as file handles and double precision floating point 1103 * values. 1104 * 1105 * This function is an identity mapping on any value that does not 1106 * contain multi-byte numeric data. That include strings, booleans, 1107 * bytes and containers containing only these things (recursively). 1108 * 1109 * The returned value is always in normal form and is marked as trusted. 1110 * 1111 * Returns: the byteswapped form of @value 1112 * 1113 * Since: 2.24 1114 */ 1115 public Variant byteswap() 1116 { 1117 auto p = g_variant_byteswap(gVariant); 1118 1119 if(p is null) 1120 { 1121 return null; 1122 } 1123 1124 return new Variant(cast(GVariant*) p, true); 1125 } 1126 1127 /** 1128 * Checks if calling g_variant_get() with @format_string on @value would 1129 * be valid from a type-compatibility standpoint. @format_string is 1130 * assumed to be a valid format string (from a syntactic standpoint). 1131 * 1132 * If @copy_only is %TRUE then this function additionally checks that it 1133 * would be safe to call g_variant_unref() on @value immediately after 1134 * the call to g_variant_get() without invalidating the result. This is 1135 * only possible if deep copies are made (ie: there are no pointers to 1136 * the data inside of the soon-to-be-freed #GVariant instance). If this 1137 * check fails then a g_critical() is printed and %FALSE is returned. 1138 * 1139 * This function is meant to be used by functions that wish to provide 1140 * varargs accessors to #GVariant values of uncertain values (eg: 1141 * g_variant_lookup() or g_menu_model_get_item_attribute()). 1142 * 1143 * Params: 1144 * formatString = a valid #GVariant format string 1145 * copyOnly = %TRUE to ensure the format string makes deep copies 1146 * 1147 * Returns: %TRUE if @format_string is safe to use 1148 * 1149 * Since: 2.34 1150 */ 1151 public bool checkFormatString(string formatString, bool copyOnly) 1152 { 1153 return g_variant_check_format_string(gVariant, Str.toStringz(formatString), copyOnly) != 0; 1154 } 1155 1156 /** 1157 * Classifies @value according to its top-level type. 1158 * 1159 * Returns: the #GVariantClass of @value 1160 * 1161 * Since: 2.24 1162 */ 1163 public GVariantClass classify() 1164 { 1165 return g_variant_classify(gVariant); 1166 } 1167 1168 /** 1169 * Compares @one and @two. 1170 * 1171 * The types of @one and @two are #gconstpointer only to allow use of 1172 * this function with #GTree, #GPtrArray, etc. They must each be a 1173 * #GVariant. 1174 * 1175 * Comparison is only defined for basic types (ie: booleans, numbers, 1176 * strings). For booleans, %FALSE is less than %TRUE. Numbers are 1177 * ordered in the usual way. Strings are in ASCII lexographical order. 1178 * 1179 * It is a programmer error to attempt to compare container values or 1180 * two values that have types that are not exactly equal. For example, 1181 * you cannot compare a 32-bit signed integer with a 32-bit unsigned 1182 * integer. Also note that this function is not particularly 1183 * well-behaved when it comes to comparison of doubles; in particular, 1184 * the handling of incomparable values (ie: NaN) is undefined. 1185 * 1186 * If you only require an equality comparison, g_variant_equal() is more 1187 * general. 1188 * 1189 * Params: 1190 * two = a #GVariant instance of the same type 1191 * 1192 * Returns: negative value if a < b; 1193 * zero if a = b; 1194 * positive value if a > b. 1195 * 1196 * Since: 2.26 1197 */ 1198 public int compare(Variant two) 1199 { 1200 return g_variant_compare(gVariant, (two is null) ? null : two.getVariantStruct()); 1201 } 1202 1203 /** 1204 * Similar to g_variant_get_bytestring() except that instead of 1205 * returning a constant string, the string is duplicated. 1206 * 1207 * The return value must be freed using g_free(). 1208 * 1209 * Returns: a newly allocated string 1210 * 1211 * Since: 2.26 1212 */ 1213 public string dupBytestring() 1214 { 1215 size_t length; 1216 1217 auto retStr = g_variant_dup_bytestring(gVariant, &length); 1218 1219 scope(exit) Str.freeString(retStr); 1220 return Str.toString(retStr, length); 1221 } 1222 1223 /** 1224 * Gets the contents of an array of array of bytes #GVariant. This call 1225 * makes a deep copy; the return result should be released with 1226 * g_strfreev(). 1227 * 1228 * If @length is non-%NULL then the number of elements in the result is 1229 * stored there. In any case, the resulting array will be 1230 * %NULL-terminated. 1231 * 1232 * For an empty array, @length will be set to 0 and a pointer to a 1233 * %NULL pointer will be returned. 1234 * 1235 * Returns: an array of strings 1236 * 1237 * Since: 2.26 1238 */ 1239 public string[] dupBytestringArray() 1240 { 1241 size_t length; 1242 1243 auto retStr = g_variant_dup_bytestring_array(gVariant, &length); 1244 1245 scope(exit) Str.freeStringArray(retStr); 1246 return Str.toStringArray(retStr, length); 1247 } 1248 1249 /** 1250 * Gets the contents of an array of object paths #GVariant. This call 1251 * makes a deep copy; the return result should be released with 1252 * g_strfreev(). 1253 * 1254 * If @length is non-%NULL then the number of elements in the result 1255 * is stored there. In any case, the resulting array will be 1256 * %NULL-terminated. 1257 * 1258 * For an empty array, @length will be set to 0 and a pointer to a 1259 * %NULL pointer will be returned. 1260 * 1261 * Returns: an array of strings 1262 * 1263 * Since: 2.30 1264 */ 1265 public string[] dupObjv() 1266 { 1267 size_t length; 1268 1269 auto retStr = g_variant_dup_objv(gVariant, &length); 1270 1271 scope(exit) Str.freeStringArray(retStr); 1272 return Str.toStringArray(retStr, length); 1273 } 1274 1275 /** 1276 * Similar to g_variant_get_string() except that instead of returning 1277 * a constant string, the string is duplicated. 1278 * 1279 * The string will always be UTF-8 encoded. 1280 * 1281 * The return value must be freed using g_free(). 1282 * 1283 * Params: 1284 * length = a pointer to a #gsize, to store the length 1285 * 1286 * Returns: a newly allocated string, UTF-8 encoded 1287 * 1288 * Since: 2.24 1289 */ 1290 public string dupString(out size_t length) 1291 { 1292 auto retStr = g_variant_dup_string(gVariant, &length); 1293 1294 scope(exit) Str.freeString(retStr); 1295 return Str.toString(retStr); 1296 } 1297 1298 /** 1299 * Gets the contents of an array of strings #GVariant. This call 1300 * makes a deep copy; the return result should be released with 1301 * g_strfreev(). 1302 * 1303 * If @length is non-%NULL then the number of elements in the result 1304 * is stored there. In any case, the resulting array will be 1305 * %NULL-terminated. 1306 * 1307 * For an empty array, @length will be set to 0 and a pointer to a 1308 * %NULL pointer will be returned. 1309 * 1310 * Returns: an array of strings 1311 * 1312 * Since: 2.24 1313 */ 1314 public string[] dupStrv() 1315 { 1316 size_t length; 1317 1318 auto retStr = g_variant_dup_strv(gVariant, &length); 1319 1320 scope(exit) Str.freeStringArray(retStr); 1321 return Str.toStringArray(retStr, length); 1322 } 1323 1324 /** 1325 * Checks if @one and @two have the same type and value. 1326 * 1327 * The types of @one and @two are #gconstpointer only to allow use of 1328 * this function with #GHashTable. They must each be a #GVariant. 1329 * 1330 * Params: 1331 * two = a #GVariant instance 1332 * 1333 * Returns: %TRUE if @one and @two are equal 1334 * 1335 * Since: 2.24 1336 */ 1337 public bool equal(Variant two) 1338 { 1339 return g_variant_equal(gVariant, (two is null) ? null : two.getVariantStruct()) != 0; 1340 } 1341 1342 /** 1343 * Returns the boolean value of @value. 1344 * 1345 * It is an error to call this function with a @value of any type 1346 * other than %G_VARIANT_TYPE_BOOLEAN. 1347 * 1348 * Returns: %TRUE or %FALSE 1349 * 1350 * Since: 2.24 1351 */ 1352 public bool getBoolean() 1353 { 1354 return g_variant_get_boolean(gVariant) != 0; 1355 } 1356 1357 /** 1358 * Returns the byte value of @value. 1359 * 1360 * It is an error to call this function with a @value of any type 1361 * other than %G_VARIANT_TYPE_BYTE. 1362 * 1363 * Returns: a #guchar 1364 * 1365 * Since: 2.24 1366 */ 1367 public char getByte() 1368 { 1369 return g_variant_get_byte(gVariant); 1370 } 1371 1372 /** 1373 * Returns the string value of a #GVariant instance with an 1374 * array-of-bytes type. The string has no particular encoding. 1375 * 1376 * If the array does not end with a nul terminator character, the empty 1377 * string is returned. For this reason, you can always trust that a 1378 * non-%NULL nul-terminated string will be returned by this function. 1379 * 1380 * If the array contains a nul terminator character somewhere other than 1381 * the last byte then the returned string is the string, up to the first 1382 * such nul character. 1383 * 1384 * g_variant_get_fixed_array() should be used instead if the array contains 1385 * arbitrary data that could not be nul-terminated or could contain nul bytes. 1386 * 1387 * It is an error to call this function with a @value that is not an 1388 * array of bytes. 1389 * 1390 * The return value remains valid as long as @value exists. 1391 * 1392 * Returns: the constant string 1393 * 1394 * Since: 2.26 1395 */ 1396 public string getBytestring() 1397 { 1398 return Str.toString(g_variant_get_bytestring(gVariant)); 1399 } 1400 1401 /** 1402 * Gets the contents of an array of array of bytes #GVariant. This call 1403 * makes a shallow copy; the return result should be released with 1404 * g_free(), but the individual strings must not be modified. 1405 * 1406 * If @length is non-%NULL then the number of elements in the result is 1407 * stored there. In any case, the resulting array will be 1408 * %NULL-terminated. 1409 * 1410 * For an empty array, @length will be set to 0 and a pointer to a 1411 * %NULL pointer will be returned. 1412 * 1413 * Returns: an array of constant strings 1414 * 1415 * Since: 2.26 1416 */ 1417 public string[] getBytestringArray() 1418 { 1419 size_t length; 1420 1421 return Str.toStringArray(g_variant_get_bytestring_array(gVariant, &length)); 1422 } 1423 1424 /** 1425 * Reads a child item out of a container #GVariant instance. This 1426 * includes variants, maybes, arrays, tuples and dictionary 1427 * entries. It is an error to call this function on any other type of 1428 * #GVariant. 1429 * 1430 * It is an error if @index_ is greater than the number of child items 1431 * in the container. See g_variant_n_children(). 1432 * 1433 * The returned value is never floating. You should free it with 1434 * g_variant_unref() when you're done with it. 1435 * 1436 * This function is O(1). 1437 * 1438 * Params: 1439 * index = the index of the child to fetch 1440 * 1441 * Returns: the child at the specified index 1442 * 1443 * Since: 2.24 1444 */ 1445 public Variant getChildValue(size_t index) 1446 { 1447 auto p = g_variant_get_child_value(gVariant, index); 1448 1449 if(p is null) 1450 { 1451 return null; 1452 } 1453 1454 return new Variant(cast(GVariant*) p, true); 1455 } 1456 1457 /** 1458 * Returns a pointer to the serialised form of a #GVariant instance. 1459 * The returned data may not be in fully-normalised form if read from an 1460 * untrusted source. The returned data must not be freed; it remains 1461 * valid for as long as @value exists. 1462 * 1463 * If @value is a fixed-sized value that was deserialised from a 1464 * corrupted serialised container then %NULL may be returned. In this 1465 * case, the proper thing to do is typically to use the appropriate 1466 * number of nul bytes in place of @value. If @value is not fixed-sized 1467 * then %NULL is never returned. 1468 * 1469 * In the case that @value is already in serialised form, this function 1470 * is O(1). If the value is not already in serialised form, 1471 * serialisation occurs implicitly and is approximately O(n) in the size 1472 * of the result. 1473 * 1474 * To deserialise the data returned by this function, in addition to the 1475 * serialised data, you must know the type of the #GVariant, and (if the 1476 * machine might be different) the endianness of the machine that stored 1477 * it. As a result, file formats or network messages that incorporate 1478 * serialised #GVariants must include this information either 1479 * implicitly (for instance "the file always contains a 1480 * %G_VARIANT_TYPE_VARIANT and it is always in little-endian order") or 1481 * explicitly (by storing the type and/or endianness in addition to the 1482 * serialised data). 1483 * 1484 * Returns: the serialised form of @value, or %NULL 1485 * 1486 * Since: 2.24 1487 */ 1488 public void* getData() 1489 { 1490 return g_variant_get_data(gVariant); 1491 } 1492 1493 /** 1494 * Returns a pointer to the serialised form of a #GVariant instance. 1495 * The semantics of this function are exactly the same as 1496 * g_variant_get_data(), except that the returned #GBytes holds 1497 * a reference to the variant data. 1498 * 1499 * Returns: A new #GBytes representing the variant data 1500 * 1501 * Since: 2.36 1502 */ 1503 public Bytes getDataAsBytes() 1504 { 1505 auto p = g_variant_get_data_as_bytes(gVariant); 1506 1507 if(p is null) 1508 { 1509 return null; 1510 } 1511 1512 return new Bytes(cast(GBytes*) p, true); 1513 } 1514 1515 /** 1516 * Returns the double precision floating point value of @value. 1517 * 1518 * It is an error to call this function with a @value of any type 1519 * other than %G_VARIANT_TYPE_DOUBLE. 1520 * 1521 * Returns: a #gdouble 1522 * 1523 * Since: 2.24 1524 */ 1525 public double getDouble() 1526 { 1527 return g_variant_get_double(gVariant); 1528 } 1529 1530 /** 1531 * Provides access to the serialised data for an array of fixed-sized 1532 * items. 1533 * 1534 * @value must be an array with fixed-sized elements. Numeric types are 1535 * fixed-size, as are tuples containing only other fixed-sized types. 1536 * 1537 * @element_size must be the size of a single element in the array, 1538 * as given by the section on 1539 * [serialized data memory][gvariant-serialised-data-memory]. 1540 * 1541 * In particular, arrays of these fixed-sized types can be interpreted 1542 * as an array of the given C type, with @element_size set to the size 1543 * the appropriate type: 1544 * - %G_VARIANT_TYPE_INT16 (etc.): #gint16 (etc.) 1545 * - %G_VARIANT_TYPE_BOOLEAN: #guchar (not #gboolean!) 1546 * - %G_VARIANT_TYPE_BYTE: #guchar 1547 * - %G_VARIANT_TYPE_HANDLE: #guint32 1548 * - %G_VARIANT_TYPE_DOUBLE: #gdouble 1549 * 1550 * For example, if calling this function for an array of 32-bit integers, 1551 * you might say `sizeof(gint32)`. This value isn't used except for the purpose 1552 * of a double-check that the form of the serialised data matches the caller's 1553 * expectation. 1554 * 1555 * @n_elements, which must be non-%NULL, is set equal to the number of 1556 * items in the array. 1557 * 1558 * Params: 1559 * elementSize = the size of each element 1560 * 1561 * Returns: a pointer to 1562 * the fixed array 1563 * 1564 * Since: 2.24 1565 */ 1566 public void[] getFixedArray(size_t elementSize) 1567 { 1568 size_t nElements; 1569 1570 auto p = g_variant_get_fixed_array(gVariant, &nElements, elementSize); 1571 1572 return p[0 .. nElements]; 1573 } 1574 1575 /** 1576 * Returns the 32-bit signed integer value of @value. 1577 * 1578 * It is an error to call this function with a @value of any type other 1579 * than %G_VARIANT_TYPE_HANDLE. 1580 * 1581 * By convention, handles are indexes into an array of file descriptors 1582 * that are sent alongside a D-Bus message. If you're not interacting 1583 * with D-Bus, you probably don't need them. 1584 * 1585 * Returns: a #gint32 1586 * 1587 * Since: 2.24 1588 */ 1589 public int getHandle() 1590 { 1591 return g_variant_get_handle(gVariant); 1592 } 1593 1594 /** 1595 * Returns the 16-bit signed integer value of @value. 1596 * 1597 * It is an error to call this function with a @value of any type 1598 * other than %G_VARIANT_TYPE_INT16. 1599 * 1600 * Returns: a #gint16 1601 * 1602 * Since: 2.24 1603 */ 1604 public short getInt16() 1605 { 1606 return g_variant_get_int16(gVariant); 1607 } 1608 1609 /** 1610 * Returns the 32-bit signed integer value of @value. 1611 * 1612 * It is an error to call this function with a @value of any type 1613 * other than %G_VARIANT_TYPE_INT32. 1614 * 1615 * Returns: a #gint32 1616 * 1617 * Since: 2.24 1618 */ 1619 public int getInt32() 1620 { 1621 return g_variant_get_int32(gVariant); 1622 } 1623 1624 /** 1625 * Returns the 64-bit signed integer value of @value. 1626 * 1627 * It is an error to call this function with a @value of any type 1628 * other than %G_VARIANT_TYPE_INT64. 1629 * 1630 * Returns: a #gint64 1631 * 1632 * Since: 2.24 1633 */ 1634 public long getInt64() 1635 { 1636 return g_variant_get_int64(gVariant); 1637 } 1638 1639 /** 1640 * Given a maybe-typed #GVariant instance, extract its value. If the 1641 * value is Nothing, then this function returns %NULL. 1642 * 1643 * Returns: the contents of @value, or %NULL 1644 * 1645 * Since: 2.24 1646 */ 1647 public Variant getMaybe() 1648 { 1649 auto p = g_variant_get_maybe(gVariant); 1650 1651 if(p is null) 1652 { 1653 return null; 1654 } 1655 1656 return new Variant(cast(GVariant*) p, true); 1657 } 1658 1659 /** 1660 * Gets a #GVariant instance that has the same value as @value and is 1661 * trusted to be in normal form. 1662 * 1663 * If @value is already trusted to be in normal form then a new 1664 * reference to @value is returned. 1665 * 1666 * If @value is not already trusted, then it is scanned to check if it 1667 * is in normal form. If it is found to be in normal form then it is 1668 * marked as trusted and a new reference to it is returned. 1669 * 1670 * If @value is found not to be in normal form then a new trusted 1671 * #GVariant is created with the same value as @value. 1672 * 1673 * It makes sense to call this function if you've received #GVariant 1674 * data from untrusted sources and you want to ensure your serialised 1675 * output is definitely in normal form. 1676 * 1677 * Returns: a trusted #GVariant 1678 * 1679 * Since: 2.24 1680 */ 1681 public Variant getNormalForm() 1682 { 1683 auto p = g_variant_get_normal_form(gVariant); 1684 1685 if(p is null) 1686 { 1687 return null; 1688 } 1689 1690 return new Variant(cast(GVariant*) p, true); 1691 } 1692 1693 /** 1694 * Gets the contents of an array of object paths #GVariant. This call 1695 * makes a shallow copy; the return result should be released with 1696 * g_free(), but the individual strings must not be modified. 1697 * 1698 * If @length is non-%NULL then the number of elements in the result 1699 * is stored there. In any case, the resulting array will be 1700 * %NULL-terminated. 1701 * 1702 * For an empty array, @length will be set to 0 and a pointer to a 1703 * %NULL pointer will be returned. 1704 * 1705 * Returns: an array of constant strings 1706 * 1707 * Since: 2.30 1708 */ 1709 public string[] getObjv() 1710 { 1711 size_t length; 1712 1713 return Str.toStringArray(g_variant_get_objv(gVariant, &length)); 1714 } 1715 1716 /** 1717 * Determines the number of bytes that would be required to store @value 1718 * with g_variant_store(). 1719 * 1720 * If @value has a fixed-sized type then this function always returned 1721 * that fixed size. 1722 * 1723 * In the case that @value is already in serialised form or the size has 1724 * already been calculated (ie: this function has been called before) 1725 * then this function is O(1). Otherwise, the size is calculated, an 1726 * operation which is approximately O(n) in the number of values 1727 * involved. 1728 * 1729 * Returns: the serialised size of @value 1730 * 1731 * Since: 2.24 1732 */ 1733 public size_t getSize() 1734 { 1735 return g_variant_get_size(gVariant); 1736 } 1737 1738 /** 1739 * Returns the string value of a #GVariant instance with a string 1740 * type. This includes the types %G_VARIANT_TYPE_STRING, 1741 * %G_VARIANT_TYPE_OBJECT_PATH and %G_VARIANT_TYPE_SIGNATURE. 1742 * 1743 * The string will always be UTF-8 encoded, and will never be %NULL. 1744 * 1745 * If @length is non-%NULL then the length of the string (in bytes) is 1746 * returned there. For trusted values, this information is already 1747 * known. For untrusted values, a strlen() will be performed. 1748 * 1749 * It is an error to call this function with a @value of any type 1750 * other than those three. 1751 * 1752 * The return value remains valid as long as @value exists. 1753 * 1754 * Params: 1755 * length = a pointer to a #gsize, 1756 * to store the length 1757 * 1758 * Returns: the constant string, UTF-8 encoded 1759 * 1760 * Since: 2.24 1761 */ 1762 public string getString(out size_t length) 1763 { 1764 return Str.toString(g_variant_get_string(gVariant, &length)); 1765 } 1766 1767 /** 1768 * Gets the contents of an array of strings #GVariant. This call 1769 * makes a shallow copy; the return result should be released with 1770 * g_free(), but the individual strings must not be modified. 1771 * 1772 * If @length is non-%NULL then the number of elements in the result 1773 * is stored there. In any case, the resulting array will be 1774 * %NULL-terminated. 1775 * 1776 * For an empty array, @length will be set to 0 and a pointer to a 1777 * %NULL pointer will be returned. 1778 * 1779 * Returns: an array of constant strings 1780 * 1781 * Since: 2.24 1782 */ 1783 public string[] getStrv() 1784 { 1785 size_t length; 1786 1787 return Str.toStringArray(g_variant_get_strv(gVariant, &length)); 1788 } 1789 1790 /** 1791 * Determines the type of @value. 1792 * 1793 * The return value is valid for the lifetime of @value and must not 1794 * be freed. 1795 * 1796 * Returns: a #GVariantType 1797 * 1798 * Since: 2.24 1799 */ 1800 public VariantType getType() 1801 { 1802 auto p = g_variant_get_type(gVariant); 1803 1804 if(p is null) 1805 { 1806 return null; 1807 } 1808 1809 return new VariantType(cast(GVariantType*) p); 1810 } 1811 1812 /** 1813 * Returns the type string of @value. Unlike the result of calling 1814 * g_variant_type_peek_string(), this string is nul-terminated. This 1815 * string belongs to #GVariant and must not be freed. 1816 * 1817 * Returns: the type string for the type of @value 1818 * 1819 * Since: 2.24 1820 */ 1821 public string getTypeString() 1822 { 1823 return Str.toString(g_variant_get_type_string(gVariant)); 1824 } 1825 1826 /** 1827 * Returns the 16-bit unsigned integer value of @value. 1828 * 1829 * It is an error to call this function with a @value of any type 1830 * other than %G_VARIANT_TYPE_UINT16. 1831 * 1832 * Returns: a #guint16 1833 * 1834 * Since: 2.24 1835 */ 1836 public ushort getUint16() 1837 { 1838 return g_variant_get_uint16(gVariant); 1839 } 1840 1841 /** 1842 * Returns the 32-bit unsigned integer value of @value. 1843 * 1844 * It is an error to call this function with a @value of any type 1845 * other than %G_VARIANT_TYPE_UINT32. 1846 * 1847 * Returns: a #guint32 1848 * 1849 * Since: 2.24 1850 */ 1851 public uint getUint32() 1852 { 1853 return g_variant_get_uint32(gVariant); 1854 } 1855 1856 /** 1857 * Returns the 64-bit unsigned integer value of @value. 1858 * 1859 * It is an error to call this function with a @value of any type 1860 * other than %G_VARIANT_TYPE_UINT64. 1861 * 1862 * Returns: a #guint64 1863 * 1864 * Since: 2.24 1865 */ 1866 public ulong getUint64() 1867 { 1868 return g_variant_get_uint64(gVariant); 1869 } 1870 1871 /** 1872 * This function is intended to be used by libraries based on #GVariant 1873 * that want to provide g_variant_get()-like functionality to their 1874 * users. 1875 * 1876 * The API is more general than g_variant_get() to allow a wider range 1877 * of possible uses. 1878 * 1879 * @format_string must still point to a valid format string, but it only 1880 * need to be nul-terminated if @endptr is %NULL. If @endptr is 1881 * non-%NULL then it is updated to point to the first character past the 1882 * end of the format string. 1883 * 1884 * @app is a pointer to a #va_list. The arguments, according to 1885 * @format_string, are collected from this #va_list and the list is left 1886 * pointing to the argument following the last. 1887 * 1888 * These two generalisations allow mixing of multiple calls to 1889 * g_variant_new_va() and g_variant_get_va() within a single actual 1890 * varargs call by the user. 1891 * 1892 * @format_string determines the C types that are used for unpacking 1893 * the values and also determines if the values are copied or borrowed, 1894 * see the section on 1895 * [GVariant format strings][gvariant-format-strings-pointers]. 1896 * 1897 * Params: 1898 * formatString = a string that is prefixed with a format string 1899 * endptr = location to store the end pointer, 1900 * or %NULL 1901 * app = a pointer to a #va_list 1902 * 1903 * Since: 2.24 1904 */ 1905 public void getVa(string formatString, string[] endptr, void** app) 1906 { 1907 g_variant_get_va(gVariant, Str.toStringz(formatString), Str.toStringzArray(endptr), app); 1908 } 1909 1910 /** 1911 * Unboxes @value. The result is the #GVariant instance that was 1912 * contained in @value. 1913 * 1914 * Returns: the item contained in the variant 1915 * 1916 * Since: 2.24 1917 */ 1918 public Variant getVariant() 1919 { 1920 auto p = g_variant_get_variant(gVariant); 1921 1922 if(p is null) 1923 { 1924 return null; 1925 } 1926 1927 return new Variant(cast(GVariant*) p, true); 1928 } 1929 1930 /** 1931 * Generates a hash value for a #GVariant instance. 1932 * 1933 * The output of this function is guaranteed to be the same for a given 1934 * value only per-process. It may change between different processor 1935 * architectures or even different versions of GLib. Do not use this 1936 * function as a basis for building protocols or file formats. 1937 * 1938 * The type of @value is #gconstpointer only to allow use of this 1939 * function with #GHashTable. @value must be a #GVariant. 1940 * 1941 * Returns: a hash value corresponding to @value 1942 * 1943 * Since: 2.24 1944 */ 1945 public uint hash() 1946 { 1947 return g_variant_hash(gVariant); 1948 } 1949 1950 /** 1951 * Checks if @value is a container. 1952 * 1953 * Returns: %TRUE if @value is a container 1954 * 1955 * Since: 2.24 1956 */ 1957 public bool isContainer() 1958 { 1959 return g_variant_is_container(gVariant) != 0; 1960 } 1961 1962 /** 1963 * Checks whether @value has a floating reference count. 1964 * 1965 * This function should only ever be used to assert that a given variant 1966 * is or is not floating, or for debug purposes. To acquire a reference 1967 * to a variant that might be floating, always use g_variant_ref_sink() 1968 * or g_variant_take_ref(). 1969 * 1970 * See g_variant_ref_sink() for more information about floating reference 1971 * counts. 1972 * 1973 * Returns: whether @value is floating 1974 * 1975 * Since: 2.26 1976 */ 1977 public bool isFloating() 1978 { 1979 return g_variant_is_floating(gVariant) != 0; 1980 } 1981 1982 /** 1983 * Checks if @value is in normal form. 1984 * 1985 * The main reason to do this is to detect if a given chunk of 1986 * serialised data is in normal form: load the data into a #GVariant 1987 * using g_variant_new_from_data() and then use this function to 1988 * check. 1989 * 1990 * If @value is found to be in normal form then it will be marked as 1991 * being trusted. If the value was already marked as being trusted then 1992 * this function will immediately return %TRUE. 1993 * 1994 * Returns: %TRUE if @value is in normal form 1995 * 1996 * Since: 2.24 1997 */ 1998 public bool isNormalForm() 1999 { 2000 return g_variant_is_normal_form(gVariant) != 0; 2001 } 2002 2003 /** 2004 * Checks if a value has a type matching the provided type. 2005 * 2006 * Params: 2007 * type = a #GVariantType 2008 * 2009 * Returns: %TRUE if the type of @value matches @type 2010 * 2011 * Since: 2.24 2012 */ 2013 public bool isOfType(VariantType type) 2014 { 2015 return g_variant_is_of_type(gVariant, (type is null) ? null : type.getVariantTypeStruct()) != 0; 2016 } 2017 2018 /** 2019 * Creates a heap-allocated #GVariantIter for iterating over the items 2020 * in @value. 2021 * 2022 * Use g_variant_iter_free() to free the return value when you no longer 2023 * need it. 2024 * 2025 * A reference is taken to @value and will be released only when 2026 * g_variant_iter_free() is called. 2027 * 2028 * Returns: a new heap-allocated #GVariantIter 2029 * 2030 * Since: 2.24 2031 */ 2032 public VariantIter iterNew() 2033 { 2034 auto p = g_variant_iter_new(gVariant); 2035 2036 if(p is null) 2037 { 2038 return null; 2039 } 2040 2041 return new VariantIter(cast(GVariantIter*) p, true); 2042 } 2043 2044 /** 2045 * Looks up a value in a dictionary #GVariant. 2046 * 2047 * This function works with dictionaries of the type a{s*} (and equally 2048 * well with type a{o*}, but we only further discuss the string case 2049 * for sake of clarity). 2050 * 2051 * In the event that @dictionary has the type a{sv}, the @expected_type 2052 * string specifies what type of value is expected to be inside of the 2053 * variant. If the value inside the variant has a different type then 2054 * %NULL is returned. In the event that @dictionary has a value type other 2055 * than v then @expected_type must directly match the key type and it is 2056 * used to unpack the value directly or an error occurs. 2057 * 2058 * In either case, if @key is not found in @dictionary, %NULL is returned. 2059 * 2060 * If the key is found and the value has the correct type, it is 2061 * returned. If @expected_type was specified then any non-%NULL return 2062 * value will have this type. 2063 * 2064 * This function is currently implemented with a linear scan. If you 2065 * plan to do many lookups then #GVariantDict may be more efficient. 2066 * 2067 * Params: 2068 * key = the key to lookup in the dictionary 2069 * expectedType = a #GVariantType, or %NULL 2070 * 2071 * Returns: the value of the dictionary key, or %NULL 2072 * 2073 * Since: 2.28 2074 */ 2075 public Variant lookupValue(string key, VariantType expectedType) 2076 { 2077 auto p = g_variant_lookup_value(gVariant, Str.toStringz(key), (expectedType is null) ? null : expectedType.getVariantTypeStruct()); 2078 2079 if(p is null) 2080 { 2081 return null; 2082 } 2083 2084 return new Variant(cast(GVariant*) p, true); 2085 } 2086 2087 /** 2088 * Determines the number of children in a container #GVariant instance. 2089 * This includes variants, maybes, arrays, tuples and dictionary 2090 * entries. It is an error to call this function on any other type of 2091 * #GVariant. 2092 * 2093 * For variants, the return value is always 1. For values with maybe 2094 * types, it is always zero or one. For arrays, it is the length of the 2095 * array. For tuples it is the number of tuple items (which depends 2096 * only on the type). For dictionary entries, it is always 2 2097 * 2098 * This function is O(1). 2099 * 2100 * Returns: the number of children in the container 2101 * 2102 * Since: 2.24 2103 */ 2104 public size_t nChildren() 2105 { 2106 return g_variant_n_children(gVariant); 2107 } 2108 2109 /** 2110 * Pretty-prints @value in the format understood by g_variant_parse(). 2111 * 2112 * The format is described [here][gvariant-text]. 2113 * 2114 * If @type_annotate is %TRUE, then type information is included in 2115 * the output. 2116 * 2117 * Params: 2118 * typeAnnotate = %TRUE if type information should be included in 2119 * the output 2120 * 2121 * Returns: a newly-allocated string holding the result. 2122 * 2123 * Since: 2.24 2124 */ 2125 public string print(bool typeAnnotate) 2126 { 2127 auto retStr = g_variant_print(gVariant, typeAnnotate); 2128 2129 scope(exit) Str.freeString(retStr); 2130 return Str.toString(retStr); 2131 } 2132 2133 /** 2134 * Behaves as g_variant_print(), but operates on a #GString. 2135 * 2136 * If @string is non-%NULL then it is appended to and returned. Else, 2137 * a new empty #GString is allocated and it is returned. 2138 * 2139 * Params: 2140 * str = a #GString, or %NULL 2141 * typeAnnotate = %TRUE if type information should be included in 2142 * the output 2143 * 2144 * Returns: a #GString containing the string 2145 * 2146 * Since: 2.24 2147 */ 2148 public StringG printString(StringG str, bool typeAnnotate) 2149 { 2150 auto p = g_variant_print_string(gVariant, (str is null) ? null : str.getStringGStruct(), typeAnnotate); 2151 2152 if(p is null) 2153 { 2154 return null; 2155 } 2156 2157 return new StringG(cast(GString*) p, true); 2158 } 2159 2160 /** 2161 * Increases the reference count of @value. 2162 * 2163 * Returns: the same @value 2164 * 2165 * Since: 2.24 2166 */ 2167 public Variant doref() 2168 { 2169 auto p = g_variant_ref(gVariant); 2170 2171 if(p is null) 2172 { 2173 return null; 2174 } 2175 2176 return new Variant(cast(GVariant*) p, true); 2177 } 2178 2179 /** 2180 * #GVariant uses a floating reference count system. All functions with 2181 * names starting with `g_variant_new_` return floating 2182 * references. 2183 * 2184 * Calling g_variant_ref_sink() on a #GVariant with a floating reference 2185 * will convert the floating reference into a full reference. Calling 2186 * g_variant_ref_sink() on a non-floating #GVariant results in an 2187 * additional normal reference being added. 2188 * 2189 * In other words, if the @value is floating, then this call "assumes 2190 * ownership" of the floating reference, converting it to a normal 2191 * reference. If the @value is not floating, then this call adds a 2192 * new normal reference increasing the reference count by one. 2193 * 2194 * All calls that result in a #GVariant instance being inserted into a 2195 * container will call g_variant_ref_sink() on the instance. This means 2196 * that if the value was just created (and has only its floating 2197 * reference) then the container will assume sole ownership of the value 2198 * at that point and the caller will not need to unreference it. This 2199 * makes certain common styles of programming much easier while still 2200 * maintaining normal refcounting semantics in situations where values 2201 * are not floating. 2202 * 2203 * Returns: the same @value 2204 * 2205 * Since: 2.24 2206 */ 2207 public Variant refSink() 2208 { 2209 auto p = g_variant_ref_sink(gVariant); 2210 2211 if(p is null) 2212 { 2213 return null; 2214 } 2215 2216 return new Variant(cast(GVariant*) p, true); 2217 } 2218 2219 /** 2220 * Stores the serialised form of @value at @data. @data should be 2221 * large enough. See g_variant_get_size(). 2222 * 2223 * The stored data is in machine native byte order but may not be in 2224 * fully-normalised form if read from an untrusted source. See 2225 * g_variant_get_normal_form() for a solution. 2226 * 2227 * As with g_variant_get_data(), to be able to deserialise the 2228 * serialised variant successfully, its type and (if the destination 2229 * machine might be different) its endianness must also be available. 2230 * 2231 * This function is approximately O(n) in the size of @data. 2232 * 2233 * Params: 2234 * data = the location to store the serialised data at 2235 * 2236 * Since: 2.24 2237 */ 2238 public void store(void* data) 2239 { 2240 g_variant_store(gVariant, data); 2241 } 2242 2243 /** 2244 * If @value is floating, sink it. Otherwise, do nothing. 2245 * 2246 * Typically you want to use g_variant_ref_sink() in order to 2247 * automatically do the correct thing with respect to floating or 2248 * non-floating references, but there is one specific scenario where 2249 * this function is helpful. 2250 * 2251 * The situation where this function is helpful is when creating an API 2252 * that allows the user to provide a callback function that returns a 2253 * #GVariant. We certainly want to allow the user the flexibility to 2254 * return a non-floating reference from this callback (for the case 2255 * where the value that is being returned already exists). 2256 * 2257 * At the same time, the style of the #GVariant API makes it likely that 2258 * for newly-created #GVariant instances, the user can be saved some 2259 * typing if they are allowed to return a #GVariant with a floating 2260 * reference. 2261 * 2262 * Using this function on the return value of the user's callback allows 2263 * the user to do whichever is more convenient for them. The caller 2264 * will alway receives exactly one full reference to the value: either 2265 * the one that was returned in the first place, or a floating reference 2266 * that has been converted to a full reference. 2267 * 2268 * This function has an odd interaction when combined with 2269 * g_variant_ref_sink() running at the same time in another thread on 2270 * the same #GVariant instance. If g_variant_ref_sink() runs first then 2271 * the result will be that the floating reference is converted to a hard 2272 * reference. If g_variant_take_ref() runs first then the result will 2273 * be that the floating reference is converted to a hard reference and 2274 * an additional reference on top of that one is added. It is best to 2275 * avoid this situation. 2276 * 2277 * Returns: the same @value 2278 */ 2279 public Variant takeRef() 2280 { 2281 auto p = g_variant_take_ref(gVariant); 2282 2283 if(p is null) 2284 { 2285 return null; 2286 } 2287 2288 return new Variant(cast(GVariant*) p, true); 2289 } 2290 2291 /** 2292 * Decreases the reference count of @value. When its reference count 2293 * drops to 0, the memory used by the variant is freed. 2294 * 2295 * Since: 2.24 2296 */ 2297 public void unref() 2298 { 2299 g_variant_unref(gVariant); 2300 } 2301 2302 /** 2303 * Determines if a given string is a valid D-Bus object path. You 2304 * should ensure that a string is a valid D-Bus object path before 2305 * passing it to g_variant_new_object_path(). 2306 * 2307 * A valid object path starts with '/' followed by zero or more 2308 * sequences of characters separated by '/' characters. Each sequence 2309 * must contain only the characters "[A-Z][a-z][0-9]_". No sequence 2310 * (including the one following the final '/' character) may be empty. 2311 * 2312 * Params: 2313 * str = a normal C nul-terminated string 2314 * 2315 * Returns: %TRUE if @string is a D-Bus object path 2316 * 2317 * Since: 2.24 2318 */ 2319 public static bool isObjectPath(string str) 2320 { 2321 return g_variant_is_object_path(Str.toStringz(str)) != 0; 2322 } 2323 2324 /** 2325 * Determines if a given string is a valid D-Bus type signature. You 2326 * should ensure that a string is a valid D-Bus type signature before 2327 * passing it to g_variant_new_signature(). 2328 * 2329 * D-Bus type signatures consist of zero or more definite #GVariantType 2330 * strings in sequence. 2331 * 2332 * Params: 2333 * str = a normal C nul-terminated string 2334 * 2335 * Returns: %TRUE if @string is a D-Bus type signature 2336 * 2337 * Since: 2.24 2338 */ 2339 public static bool isSignature(string str) 2340 { 2341 return g_variant_is_signature(Str.toStringz(str)) != 0; 2342 } 2343 2344 /** 2345 * Parses a #GVariant from a text representation. 2346 * 2347 * A single #GVariant is parsed from the content of @text. 2348 * 2349 * The format is described [here][gvariant-text]. 2350 * 2351 * The memory at @limit will never be accessed and the parser behaves as 2352 * if the character at @limit is the nul terminator. This has the 2353 * effect of bounding @text. 2354 * 2355 * If @endptr is non-%NULL then @text is permitted to contain data 2356 * following the value that this function parses and @endptr will be 2357 * updated to point to the first character past the end of the text 2358 * parsed by this function. If @endptr is %NULL and there is extra data 2359 * then an error is returned. 2360 * 2361 * If @type is non-%NULL then the value will be parsed to have that 2362 * type. This may result in additional parse errors (in the case that 2363 * the parsed value doesn't fit the type) but may also result in fewer 2364 * errors (in the case that the type would have been ambiguous, such as 2365 * with empty arrays). 2366 * 2367 * In the event that the parsing is successful, the resulting #GVariant 2368 * is returned. It is never floating, and must be freed with 2369 * g_variant_unref(). 2370 * 2371 * In case of any error, %NULL will be returned. If @error is non-%NULL 2372 * then it will be set to reflect the error that occurred. 2373 * 2374 * Officially, the language understood by the parser is "any string 2375 * produced by g_variant_print()". 2376 * 2377 * Params: 2378 * type = a #GVariantType, or %NULL 2379 * text = a string containing a GVariant in text form 2380 * limit = a pointer to the end of @text, or %NULL 2381 * endptr = a location to store the end pointer, or %NULL 2382 * 2383 * Returns: a non-floating reference to a #GVariant, or %NULL 2384 * 2385 * Throws: GException on failure. 2386 */ 2387 public static Variant parse(VariantType type, string text, string limit, string[] endptr) 2388 { 2389 GError* err = null; 2390 2391 auto p = g_variant_parse((type is null) ? null : type.getVariantTypeStruct(), Str.toStringz(text), Str.toStringz(limit), Str.toStringzArray(endptr), &err); 2392 2393 if (err !is null) 2394 { 2395 throw new GException( new ErrorG(err) ); 2396 } 2397 2398 if(p is null) 2399 { 2400 return null; 2401 } 2402 2403 return new Variant(cast(GVariant*) p, true); 2404 } 2405 2406 /** 2407 * Pretty-prints a message showing the context of a #GVariant parse 2408 * error within the string for which parsing was attempted. 2409 * 2410 * The resulting string is suitable for output to the console or other 2411 * monospace media where newlines are treated in the usual way. 2412 * 2413 * The message will typically look something like one of the following: 2414 * 2415 * |[ 2416 * unterminated string constant: 2417 * (1, 2, 3, 'abc 2418 * ^^^^ 2419 * ]| 2420 * 2421 * or 2422 * 2423 * |[ 2424 * unable to find a common type: 2425 * [1, 2, 3, 'str'] 2426 * ^ ^^^^^ 2427 * ]| 2428 * 2429 * The format of the message may change in a future version. 2430 * 2431 * @error must have come from a failed attempt to g_variant_parse() and 2432 * @source_str must be exactly the same string that caused the error. 2433 * If @source_str was not nul-terminated when you passed it to 2434 * g_variant_parse() then you must add nul termination before using this 2435 * function. 2436 * 2437 * Params: 2438 * error = a #GError from the #GVariantParseError domain 2439 * sourceStr = the string that was given to the parser 2440 * 2441 * Returns: the printed message 2442 * 2443 * Since: 2.40 2444 */ 2445 public static string parseErrorPrintContext(ErrorG error, string sourceStr) 2446 { 2447 auto retStr = g_variant_parse_error_print_context((error is null) ? null : error.getErrorGStruct(), Str.toStringz(sourceStr)); 2448 2449 scope(exit) Str.freeString(retStr); 2450 return Str.toString(retStr); 2451 } 2452 2453 /** */ 2454 public static GQuark parseErrorQuark() 2455 { 2456 return g_variant_parse_error_quark(); 2457 } 2458 2459 /** 2460 * Same as g_variant_error_quark(). 2461 * 2462 * Deprecated: Use g_variant_parse_error_quark() instead. 2463 */ 2464 public static GQuark parserGetErrorQuark() 2465 { 2466 return g_variant_parser_get_error_quark(); 2467 } 2468 }