Sets our main struct and passes it to the parent class.
The ::direction-changed signal gets emitted when the direction of the keymap changes.
The ::keys-changed signal is emitted when the mapping represented by @keymap changes.
The ::state-changed signal is emitted when the state of the keyboard changes, e.g when Caps Lock is turned on or off. See gdk_keymap_get_caps_lock_state().
Maps the non-virtual modifiers (i.e Mod2, Mod3, ...) which are set in @state to the virtual modifiers (i.e. Super, Hyper and Meta) and set the corresponding bits in @state.
Returns whether the Caps Lock modifer is locked.
Returns the direction of effective layout of the keymap.
Returns the keyvals bound to @hardware_keycode. The Nth #GdkKeymapKey in @keys is bound to the Nth keyval in @keyvals. Free the returned arrays with g_free(). When a keycode is pressed by the user, the keyval from this list of entries is selected by considering the effective keyboard group and level. See gdk_keymap_translate_keyboard_state().
Obtains a list of keycode/group/level combinations that will generate @keyval. Groups and levels are two kinds of keyboard mode; in general, the level determines whether the top or bottom symbol on a key is used, and the group determines whether the left or right symbol is used. On US keyboards, the shift key changes the keyboard level, and there are no groups. A group switch key might convert a keyboard between Hebrew to English modes, for example. #GdkEventKey contains a %group field that indicates the active keyboard group. The level is computed from the modifier mask. The returned array should be freed with g_free().
Get the main Gtk struct
Returns the modifier mask the @keymap’s windowing system backend uses for a particular purpose.
Returns the current modifier state.
Returns whether the Num Lock modifer is locked.
Returns whether the Scroll Lock modifer is locked.
the main Gtk struct as a void*
Determines if keyboard layouts for both right-to-left and left-to-right languages are in use.
Looks up the keyval mapped to a keycode/group/level triplet. If no keyval is bound to @key, returns 0. For normal user input, you want to use gdk_keymap_translate_keyboard_state() instead of this function, since the effective group/level may not be the same as the current keyboard state.
Maps the virtual modifiers (i.e. Super, Hyper and Meta) which are set in @state to their non-virtual counterparts (i.e. Mod2, Mod3,...) and set the corresponding bits in @state.
Translates the contents of a #GdkEventKey into a keyval, effective group, and level. Modifiers that affected the translation and are thus unavailable for application use are returned in @consumed_modifiers. See Groups[key-group-explanation] for an explanation of groups and levels. The @effective_group is the group that was actually used for the translation; some keys such as Enter are not affected by the active keyboard group. The @level is derived from @state. For convenience, #GdkEventKey already contains the translated keyval, so this function isn’t as useful as you might think.
Returns the #GdkKeymap attached to the default display.
Returns the #GdkKeymap attached to @display.
Obtains the upper- and lower-case versions of the keyval @symbol. Examples of keyvals are #GDK_KEY_a, #GDK_KEY_Enter, #GDK_KEY_F1, etc.
Converts a key name to a key value.
Returns %TRUE if the given key value is in lower case.
Returns %TRUE if the given key value is in upper case.
Converts a key value into a symbolic name.
Converts a key value to lower case, if applicable.
Convert from a GDK key symbol to the corresponding ISO10646 (Unicode) character.
Converts a key value to upper case, if applicable.
Convert from a ISO10646 character to a key symbol.
the main Gtk struct
the main Gtk struct
Get the main Gtk struct
the main Gtk struct as a void*
Gets a D Object from the objects table of associations.
The notify signal is emitted on an object when one of its properties has been changed. Note that getting this signal doesn't guarantee that the value of the property has actually changed, it may also be emitted when the setter for the property is called to reinstate the previous value.
Find the #GParamSpec with the given name for an interface. Generally, the interface vtable passed in as @g_iface will be the default vtable from g_type_default_interface_ref(), or, if you know the interface has already been loaded, g_type_default_interface_peek().
Add a property to an interface; this is only useful for interfaces that are added to GObject-derived types. Adding a property to an interface forces all objects classes with that interface to have a compatible property. The compatible property could be a newly created #GParamSpec, but normally g_object_class_override_property() will be used so that the object class only needs to provide an implementation and inherits the property description, default value, bounds, and so forth from the interface property.
Lists the properties of an interface.Generally, the interface vtable passed in as @g_iface will be the default vtable from g_type_default_interface_ref(), or, if you know the interface has already been loaded, g_type_default_interface_peek().
Increases the reference count of the object by one and sets a callback to be called when all other references to the object are dropped, or when this is already the last reference to the object and another reference is established.
Adds a weak reference from weak_pointer to @object to indicate that the pointer located at @weak_pointer_location is only valid during the lifetime of @object. When the @object is finalized, @weak_pointer will be set to %NULL.
Creates a binding between @source_property on @source and @target_property on @target. Whenever the @source_property is changed the @target_property is updated using the same value. For instance:
Complete version of g_object_bind_property().
Creates a binding between @source_property on @source and @target_property on @target, allowing you to set the transformation functions to be used by the binding.
This is a variant of g_object_get_data() which returns a 'duplicate' of the value. @dup_func defines the meaning of 'duplicate' in this context, it could e.g. take a reference on a ref-counted object.
This is a variant of g_object_get_qdata() which returns a 'duplicate' of the value. @dup_func defines the meaning of 'duplicate' in this context, it could e.g. take a reference on a ref-counted object.
This function is intended for #GObject implementations to re-enforce a floating[floating-ref] object reference. Doing this is seldom required: all #GInitiallyUnowneds are created with a floating reference which usually just needs to be sunken by calling g_object_ref_sink().
Increases the freeze count on @object. If the freeze count is non-zero, the emission of "notify" signals on @object is stopped. The signals are queued until the freeze count is decreased to zero. Duplicate notifications are squashed so that at most one #GObject::notify signal is emitted for each property modified while the object is frozen.
Gets a named field from the objects table of associations (see g_object_set_data()).
Gets a property of an object. @value must have been initialized to the expected type of the property (or a type to which the expected type can be transformed) using g_value_init().
This function gets back user data pointers stored via g_object_set_qdata().
Gets properties of an object.
Gets @n_properties properties for an @object. Obtained properties will be set to @values. All properties must be valid. Warnings will be emitted and undefined behaviour may result if invalid properties are passed in.
Checks whether @object has a floating[floating-ref] reference.
Emits a "notify" signal for the property @property_name on @object.
Emits a "notify" signal for the property specified by @pspec on @object.
Increases the reference count of @object.
Increase the reference count of @object, and possibly remove the floating[floating-ref] reference, if @object has a floating reference.
Removes a reference added with g_object_add_toggle_ref(). The reference count of the object is decreased by one.
Removes a weak reference from @object that was previously added using g_object_add_weak_pointer(). The @weak_pointer_location has to match the one used with g_object_add_weak_pointer().
Compares the user data for the key @key on @object with @oldval, and if they are the same, replaces @oldval with @newval.
Compares the user data for the key @quark on @object with @oldval, and if they are the same, replaces @oldval with @newval.
Releases all references to other objects. This can be used to break reference cycles.
Each object carries around a table of associations from strings to pointers. This function lets you set an association.
Like g_object_set_data() except it adds notification for when the association is destroyed, either by setting it to a different value or when the object is destroyed.
Sets a property on an object.
This sets an opaque, named pointer on an object. The name is specified through a #GQuark (retrived e.g. via g_quark_from_static_string()), and the pointer can be gotten back from the @object with g_object_get_qdata() until the @object is finalized. Setting a previously set user data pointer, overrides (frees) the old pointer set, using #NULL as pointer essentially removes the data stored.
This function works like g_object_set_qdata(), but in addition, a void (*destroy) (gpointer) function may be specified which is called with @data as argument when the @object is finalized, or the data is being overwritten by a call to g_object_set_qdata() with the same @quark.
Sets properties on an object.
Sets @n_properties properties for an @object. Properties to be set will be taken from @values. All properties must be valid. Warnings will be emitted and undefined behaviour may result if invalid properties are passed in.
Remove a specified datum from the object's data associations, without invoking the association's destroy handler.
This function gets back user data pointers stored via g_object_set_qdata() and removes the @data from object without invoking its destroy() function (if any was set). Usually, calling this function is only required to update user data pointers with a destroy notifier, for example: |[<!-- language="C" --> void object_add_to_user_list (GObject *object, const gchar *new_string) { // the quark, naming the object data GQuark quark_string_list = g_quark_from_static_string ("my-string-list"); // retrive the old string list GList *list = g_object_steal_qdata (object, quark_string_list);
Reverts the effect of a previous call to g_object_freeze_notify(). The freeze count is decreased on @object and when it reaches zero, queued "notify" signals are emitted.
Decreases the reference count of @object. When its reference count drops to 0, the object is finalized (i.e. its memory is freed).
This function essentially limits the life time of the @closure to the life time of the object. That is, when the object is finalized, the @closure is invalidated by calling g_closure_invalidate() on it, in order to prevent invocations of the closure with a finalized (nonexisting) object. Also, g_object_ref() and g_object_unref() are added as marshal guards to the @closure, to ensure that an extra reference count is held on @object during invocation of the @closure. Usually, this function will be called on closures that use this @object as closure data.
Adds a weak reference callback to an object. Weak references are used for notification when an object is finalized. They are called "weak references" because they allow you to safely hold a pointer to an object without calling g_object_ref() (g_object_ref() adds a strong reference, that is, forces the object to stay alive).
Removes a weak reference callback to an object.
Clears a reference to a #GObject.
A #GdkKeymap defines the translation from keyboard state (including a hardware key, a modifier mask, and active keyboard group) to a keyval. This translation has two phases. The first phase is to determine the effective keyboard group and level for the keyboard state; the second phase is to look up the keycode/group/level triplet in the keymap and see what keyval it corresponds to.