1 /*
2  * This file is part of gtkD.
3  *
4  * gtkD is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU Lesser General Public License
6  * as published by the Free Software Foundation; either version 3
7  * of the License, or (at your option) any later version, with
8  * some exceptions, please read the COPYING file.
9  *
10  * gtkD is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU Lesser General Public License for more details.
14  *
15  * You should have received a copy of the GNU Lesser General Public License
16  * along with gtkD; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110, USA
18  */
19 
20 // generated automatically - do not change
21 // find conversion definition on APILookup.txt
22 // implement new conversion functionalities on the wrap.utils pakage
23 
24 
25 module gobject.ObjectG;
26 
27 private import core.memory;
28 private import glib.ConstructionException;
29 private import glib.Str;
30 private import gobject.Binding;
31 private import gobject.Closure;
32 private import gobject.ObjectG;
33 private import gobject.ParamSpec;
34 private import gobject.Signals;
35 private import gobject.TypeInterface;
36 private import gobject.Value;
37 private import gobject.c.functions;
38 public  import gobject.c.types;
39 public  import gtkc.gobjecttypes;
40 private import gtkd.Loader;
41 private import std.algorithm;
42 private import std.traits;
43 
44 
45 /**
46  * All the fields in the GObject structure are private
47  * to the #GObject implementation and should never be accessed directly.
48  */
49 public class ObjectG
50 {
51 	/** the main Gtk struct */
52 	protected GObject* gObject;
53 	protected bool ownedRef;
54 
55 	/** Get the main Gtk struct */
56 	public GObject* getObjectGStruct(bool transferOwnership = false)
57 	{
58 		if (transferOwnership)
59 			ownedRef = false;
60 		return gObject;
61 	}
62 
63 	/** the main Gtk struct as a void* */
64 	protected void* getStruct()
65 	{
66 		return cast(void*)gObject;
67 	}
68 
69 	protected bool isGcRoot;
70 
71 	/**
72 	 * Sets our main struct and passes store it on the gobject.
73 	 * Add a gabage collector root to the gtk+ struct so it doesn't get collect
74 	 */
75 	public this (GObject* gObject, bool ownedRef = false)
76 	{
77 		this.gObject = gObject;
78 		if ( gObject !is  null )
79 		{
80 			setDataFull("GObject", cast(void*)this, cast(GDestroyNotify)&destroyNotify);
81 			addToggleRef(cast(GToggleNotify)&toggleNotify, cast(void*)this);
82 
83 			//If the refCount is larger then 1 toggleNotify isn't called
84 			if (gObject.refCount > 1 && !isGcRoot)
85 			{
86 				GC.addRoot(cast(void*)this);
87 				isGcRoot = true;
88 			}
89 
90 			//Remove the floating reference if there is one.
91 			if ( isFloating() )
92 			{
93 				refSink();
94 				unref();
95 			}
96 			//If we already owned this reference remove the one added by addToggleRef.
97 			else if ( ownedRef )
98 			{
99 				unref();
100 			}
101 		}
102 	}
103 
104 	extern(C)
105 	{
106 		static void destroyNotify(ObjectG obj)
107 		{
108 			if ( obj.isGcRoot )
109 			{
110 				GC.removeRoot(cast(void*)obj);
111 				obj.isGcRoot = false;
112 			}
113 
114 			if ( obj.gObject.refCount > 0 )
115 				obj.removeToggleRef(cast(GToggleNotify)&toggleNotify, cast(void*)obj);
116 
117 			obj.gObject = null;
118 		}
119 
120 		static void toggleNotify(ObjectG obj, GObject* object, int isLastRef)
121 		{
122 			if ( isLastRef && obj.isGcRoot )
123 			{
124 				GC.removeRoot(cast(void*)obj);
125 				obj.isGcRoot = false;
126 			}
127 			else if ( !obj.isGcRoot )
128 			{
129 				GC.addRoot(cast(void*)obj);
130 				obj.isGcRoot = true;
131 			}
132 		}
133 	}
134 
135 	~this()
136 	{
137 		static if ( isPointer!(typeof(g_object_steal_data)) )
138 			bool libLoaded = Linker.isLoaded(LIBRARY_GOBJECT);
139 		else
140 			enum libLoaded = true;
141 
142 		if ( libLoaded && gObject !is null )
143 		{
144 			// Remove the GDestroyNotify callback,
145 			// for when the D object is destroyed before the C one.
146 			g_object_steal_data(gObject, cast(char*)"GObject");
147 
148 			if ( isGcRoot )
149 			{
150 				GC.removeRoot(cast(void*)this);
151 				isGcRoot = false;
152 			}
153 
154 			unref();
155 		}
156 	}
157 
158 	/** */
159 	T opCast(T)()
160 	{
161 		static if ( is(T : ObjectG)
162 			&& !is(T == interface)
163 			&& is(typeof(new T(cast(typeof(T.tupleof[0]))gObject, false))) )
164 		{
165 			//If a regular cast works, return the result.
166 			if ( auto r = cast(T)super )
167 				return r;
168 
169 			//Prints a warning if the cast is invalid.
170 			//g_type_check_instance_cast(cast(GTypeInstance*)gObject, T.getType());
171 
172 			//Can we cast this type to T.
173 			if ( !g_type_is_a(gObject.gTypeInstance.gClass.gType, T.getType()) )
174 				return null;
175 
176 			//Remove the GDestroyNotify callback for the original d object.
177 			g_object_steal_data(gObject, "GObject");
178 			//Remove the original object as a GC root if needed.
179 			if ( isGcRoot )
180 			{
181 				GC.removeRoot(cast(void*)this);
182 				isGcRoot = false;
183 			}
184 			//Add a reference for the original D object before we remove the toggle reference.
185 			g_object_ref(gObject);
186 			g_object_remove_toggle_ref(gObject, cast(GToggleNotify)&toggleNotify, cast(void*)this);
187 
188 			//The new object handles the memory management.
189 			return new T(cast(typeof(T.tupleof[0]))gObject, false);
190 		}
191 		else static if ( is(T == interface)
192 			&& hasStaticMember!(T, "getType")
193 			&& is(ReturnType!(T.getType) == GType) )
194 		{
195 			//If a regular cast works, return the result.
196 			if ( auto r = cast(T)super )
197 				return r;
198 
199 			//Do we implement interface T.
200 			if ( !g_type_is_a(gObject.gTypeInstance.gClass.gType, T.getType()) )
201 				return null;
202 
203 			return getInterfaceInstance!T(gObject);
204 		}
205 		else
206 			return cast(T)super;
207 	}
208 
209 	/**
210 	 * Gets a D Object from the objects table of associations.
211 	 * Params:
212 	 *  obj = GObject containing the associations.
213 	 * Returns: the D Object if found, or a newly constructed object if no such Object exists.
214 	 */
215 	public static RT getDObject(T, RT=T, U)(U obj, bool ownedRef = false)
216 	{
217 		if ( obj is null )
218 		{
219 			return null;
220 		}
221 
222 		static if ( is(T : ObjectG) && !is(RT == interface) )
223 		{
224 			auto p = g_object_get_data(cast(GObject*)obj, Str.toStringz("GObject"));
225 
226 			if ( p !is null )
227 				return cast(RT)cast(ObjectG)p;
228 			else
229 				return new T(obj, ownedRef);
230 		}
231 		else static if ( is(RT == interface) && hasStaticMember!(RT, "getType") && is(ReturnType!(RT.getType) == GType) )
232 		{
233 			auto p = g_object_get_data(cast(GObject*)obj, Str.toStringz("GObject"));
234 
235 			if ( p !is null )
236 				return cast(RT)cast(ObjectG)p;
237 			else
238 				return getInterfaceInstance!RT(cast(GObject*)obj);
239 		}
240 		else
241 		{
242 			return new T(obj, ownedRef);
243 		}
244 	}
245 
246 	private static I getInterfaceInstance(I)(GObject* instance)
247 	{
248 		static class Impl: ObjectG, I
249 		{
250 			public this (GObject* gObject, bool ownedRef = false)
251 			{
252 				super(gObject, ownedRef);
253 			}
254 
255 			/** the main Gtk struct as a void* */
256 			protected override void* getStruct()
257 			{
258 				return cast(void*)gObject;
259 			}
260 
261 			// add the interface capabilities
262 			mixin("import "~ moduleName!I[0..$-2] ~"T;import "~ moduleName!I ~"; mixin "~ __traits(identifier, I)[0..$-2] ~"T!("~__traits(identifier, Impl)~");");
263 		}
264 
265 		ClassInfo ci = Impl.classinfo;
266 		Impl iface;
267 		void* p;
268 
269 		//Skip all the setup for the memory management,
270 		//and only add an extra reference for the instance returned.
271 		p = GC.malloc(ci.initializer.length, GC.BlkAttr.FINALIZE, ci);
272 		p[0..ci.initializer.length] = ci.initializer;
273 		iface = cast(Impl)p;
274 		iface.gObject = instance;
275 		iface.doref();
276 
277 		return iface;
278 	}
279 
280 	/** */
281 	public void setProperty(T)(string propertyName, T value)
282 	{
283 		setProperty(propertyName, new Value(value));
284 	}
285 
286 	deprecated("Use the member function")
287 	public static void unref(ObjectG obj)
288 	{
289 		obj.unref();
290 	}
291 
292 	deprecated("Use the member function")
293 	public static ObjectG doref(ObjectG obj)
294 	{
295 		return obj.doref();
296 	}
297 
298 	protected class OnNotifyDelegateWrapper
299 	{
300 		void delegate(ParamSpec, ObjectG) dlg;
301 		gulong handlerId;
302 
303 		this(void delegate(ParamSpec, ObjectG) dlg)
304 		{
305 			this.dlg = dlg;
306 			onNotifyListeners ~= this;
307 		}
308 
309 		void remove(OnNotifyDelegateWrapper source)
310 		{
311 			foreach(index, wrapper; onNotifyListeners)
312 			{
313 				if (wrapper.handlerId == source.handlerId)
314 				{
315 					onNotifyListeners[index] = null;
316 					onNotifyListeners = std.algorithm.remove(onNotifyListeners, index);
317 					break;
318 				}
319 			}
320 		}
321 	}
322 	OnNotifyDelegateWrapper[] onNotifyListeners;
323 
324 	/**
325 	 * The notify signal is emitted on an object when one of its
326 	 * properties has been changed. Note that getting this signal
327 	 * doesn't guarantee that the value of the property has actually
328 	 * changed, it may also be emitted when the setter for the property
329 	 * is called to reinstate the previous value.
330 	 *
331 	 * This signal is typically used to obtain change notification for a
332 	 * single property.
333 	 *
334 	 * It is important to note that you must use
335 	 * canonical parameter names for the property.
336 	 *
337 	 * Params:
338 	 *     dlg          = The callback.
339 	 *     property     = Set this if you only want to receive the signal for a specific property.
340 	 *     connectFlags = The behavior of the signal's connection.
341 	 */
342 	gulong addOnNotify(void delegate(ParamSpec, ObjectG) dlg, string property = "", ConnectFlags connectFlags=cast(ConnectFlags)0)
343 	{
344 		string signalName;
345 
346 		if ( property == "" )
347 			signalName = "notify";
348 		else
349 			signalName = "notify::"~ property;
350 
351 		auto wrapper = new OnNotifyDelegateWrapper(dlg);
352 		wrapper.handlerId = Signals.connectData(
353 			this,
354 			signalName,
355 			cast(GCallback)&callBackNotify,
356 			cast(void*)wrapper,
357 			cast(GClosureNotify)&callBackNotifyDestroy,
358 			connectFlags);
359 		return wrapper.handlerId;
360 	}
361 
362 	extern(C) static void callBackNotify(GObject* objectgStruct, GParamSpec* pspec,OnNotifyDelegateWrapper wrapper)
363 	{
364 		wrapper.dlg(ObjectG.getDObject!(ParamSpec)(pspec), wrapper.outer);
365 	}
366 
367 	extern(C) static void callBackNotifyDestroy(OnNotifyDelegateWrapper wrapper, GClosure* closure)
368 	{
369 		wrapper.remove(wrapper);
370 	}
371 
372 	/**
373 	 */
374 
375 	/** */
376 	public static GType getType()
377 	{
378 		return g_initially_unowned_get_type();
379 	}
380 
381 	/**
382 	 * Creates a new instance of a #GObject subtype and sets its properties.
383 	 *
384 	 * Construction parameters (see #G_PARAM_CONSTRUCT, #G_PARAM_CONSTRUCT_ONLY)
385 	 * which are not explicitly specified are set to their default values.
386 	 *
387 	 * Params:
388 	 *     objectType = the type id of the #GObject subtype to instantiate
389 	 *     firstPropertyName = the name of the first property
390 	 *     varArgs = the value of the first property, followed optionally by more
391 	 *         name/value pairs, followed by %NULL
392 	 *
393 	 * Returns: a new instance of @object_type
394 	 *
395 	 * Throws: ConstructionException GTK+ fails to create the object.
396 	 */
397 	public this(GType objectType, string firstPropertyName, void* varArgs)
398 	{
399 		auto p = g_object_new_valist(objectType, Str.toStringz(firstPropertyName), varArgs);
400 
401 		if(p is null)
402 		{
403 			throw new ConstructionException("null returned by new_valist");
404 		}
405 
406 		this(cast(GObject*) p, true);
407 	}
408 
409 	/**
410 	 * Creates a new instance of a #GObject subtype and sets its properties using
411 	 * the provided arrays. Both arrays must have exactly @n_properties elements,
412 	 * and the names and values correspond by index.
413 	 *
414 	 * Construction parameters (see %G_PARAM_CONSTRUCT, %G_PARAM_CONSTRUCT_ONLY)
415 	 * which are not explicitly specified are set to their default values.
416 	 *
417 	 * Params:
418 	 *     objectType = the object type to instantiate
419 	 *     names = the names of each property to be set
420 	 *     values = the values of each property to be set
421 	 *
422 	 * Returns: a new instance of
423 	 *     @object_type
424 	 *
425 	 * Since: 2.54
426 	 *
427 	 * Throws: ConstructionException GTK+ fails to create the object.
428 	 */
429 	public this(GType objectType, string[] names, Value[] values)
430 	{
431 		GValue[] valuesArray = new GValue[values.length];
432 		for ( int i = 0; i < values.length; i++ )
433 		{
434 			valuesArray[i] = *(values[i].getValueStruct());
435 		}
436 
437 		auto p = g_object_new_with_properties(objectType, cast(uint)values.length, Str.toStringzArray(names), valuesArray.ptr);
438 
439 		if(p is null)
440 		{
441 			throw new ConstructionException("null returned by new_with_properties");
442 		}
443 
444 		this(cast(GObject*) p, true);
445 	}
446 
447 	/**
448 	 * Creates a new instance of a #GObject subtype and sets its properties.
449 	 *
450 	 * Construction parameters (see #G_PARAM_CONSTRUCT, #G_PARAM_CONSTRUCT_ONLY)
451 	 * which are not explicitly specified are set to their default values.
452 	 *
453 	 * Deprecated: Use g_object_new_with_properties() instead.
454 	 * deprecated. See #GParameter for more information.
455 	 *
456 	 * Params:
457 	 *     objectType = the type id of the #GObject subtype to instantiate
458 	 *     parameters = an array of #GParameter
459 	 *
460 	 * Returns: a new instance of
461 	 *     @object_type
462 	 *
463 	 * Throws: ConstructionException GTK+ fails to create the object.
464 	 */
465 	public this(GType objectType, GParameter[] parameters)
466 	{
467 		auto p = g_object_newv(objectType, cast(uint)parameters.length, parameters.ptr);
468 
469 		if(p is null)
470 		{
471 			throw new ConstructionException("null returned by newv");
472 		}
473 
474 		this(cast(GObject*) p, true);
475 	}
476 
477 	/** */
478 	public static size_t compatControl(size_t what, void* data)
479 	{
480 		return g_object_compat_control(what, data);
481 	}
482 
483 	/**
484 	 * Find the #GParamSpec with the given name for an
485 	 * interface. Generally, the interface vtable passed in as @g_iface
486 	 * will be the default vtable from g_type_default_interface_ref(), or,
487 	 * if you know the interface has already been loaded,
488 	 * g_type_default_interface_peek().
489 	 *
490 	 * Params:
491 	 *     gIface = any interface vtable for the
492 	 *         interface, or the default vtable for the interface
493 	 *     propertyName = name of a property to lookup.
494 	 *
495 	 * Returns: the #GParamSpec for the property of the
496 	 *     interface with the name @property_name, or %NULL if no
497 	 *     such property exists.
498 	 *
499 	 * Since: 2.4
500 	 */
501 	public static ParamSpec interfaceFindProperty(TypeInterface gIface, string propertyName)
502 	{
503 		auto p = g_object_interface_find_property((gIface is null) ? null : gIface.getTypeInterfaceStruct(), Str.toStringz(propertyName));
504 
505 		if(p is null)
506 		{
507 			return null;
508 		}
509 
510 		return ObjectG.getDObject!(ParamSpec)(cast(GParamSpec*) p);
511 	}
512 
513 	/**
514 	 * Add a property to an interface; this is only useful for interfaces
515 	 * that are added to GObject-derived types. Adding a property to an
516 	 * interface forces all objects classes with that interface to have a
517 	 * compatible property. The compatible property could be a newly
518 	 * created #GParamSpec, but normally
519 	 * g_object_class_override_property() will be used so that the object
520 	 * class only needs to provide an implementation and inherits the
521 	 * property description, default value, bounds, and so forth from the
522 	 * interface property.
523 	 *
524 	 * This function is meant to be called from the interface's default
525 	 * vtable initialization function (the @class_init member of
526 	 * #GTypeInfo.) It must not be called after after @class_init has
527 	 * been called for any object types implementing this interface.
528 	 *
529 	 * Params:
530 	 *     gIface = any interface vtable for the
531 	 *         interface, or the default
532 	 *         vtable for the interface.
533 	 *     pspec = the #GParamSpec for the new property
534 	 *
535 	 * Since: 2.4
536 	 */
537 	public static void interfaceInstallProperty(TypeInterface gIface, ParamSpec pspec)
538 	{
539 		g_object_interface_install_property((gIface is null) ? null : gIface.getTypeInterfaceStruct(), (pspec is null) ? null : pspec.getParamSpecStruct());
540 	}
541 
542 	/**
543 	 * Lists the properties of an interface.Generally, the interface
544 	 * vtable passed in as @g_iface will be the default vtable from
545 	 * g_type_default_interface_ref(), or, if you know the interface has
546 	 * already been loaded, g_type_default_interface_peek().
547 	 *
548 	 * Params:
549 	 *     gIface = any interface vtable for the
550 	 *         interface, or the default vtable for the interface
551 	 *
552 	 * Returns: a
553 	 *     pointer to an array of pointers to #GParamSpec
554 	 *     structures. The paramspecs are owned by GLib, but the
555 	 *     array should be freed with g_free() when you are done with
556 	 *     it.
557 	 *
558 	 * Since: 2.4
559 	 */
560 	public static ParamSpec[] interfaceListProperties(TypeInterface gIface)
561 	{
562 		uint nPropertiesP;
563 
564 		auto p = g_object_interface_list_properties((gIface is null) ? null : gIface.getTypeInterfaceStruct(), &nPropertiesP);
565 
566 		if(p is null)
567 		{
568 			return null;
569 		}
570 
571 		ParamSpec[] arr = new ParamSpec[nPropertiesP];
572 		for(int i = 0; i < nPropertiesP; i++)
573 		{
574 			arr[i] = ObjectG.getDObject!(ParamSpec)(cast(GParamSpec*) p[i]);
575 		}
576 
577 		return arr;
578 	}
579 
580 	/**
581 	 * Increases the reference count of the object by one and sets a
582 	 * callback to be called when all other references to the object are
583 	 * dropped, or when this is already the last reference to the object
584 	 * and another reference is established.
585 	 *
586 	 * This functionality is intended for binding @object to a proxy
587 	 * object managed by another memory manager. This is done with two
588 	 * paired references: the strong reference added by
589 	 * g_object_add_toggle_ref() and a reverse reference to the proxy
590 	 * object which is either a strong reference or weak reference.
591 	 *
592 	 * The setup is that when there are no other references to @object,
593 	 * only a weak reference is held in the reverse direction from @object
594 	 * to the proxy object, but when there are other references held to
595 	 * @object, a strong reference is held. The @notify callback is called
596 	 * when the reference from @object to the proxy object should be
597 	 * "toggled" from strong to weak (@is_last_ref true) or weak to strong
598 	 * (@is_last_ref false).
599 	 *
600 	 * Since a (normal) reference must be held to the object before
601 	 * calling g_object_add_toggle_ref(), the initial state of the reverse
602 	 * link is always strong.
603 	 *
604 	 * Multiple toggle references may be added to the same gobject,
605 	 * however if there are multiple toggle references to an object, none
606 	 * of them will ever be notified until all but one are removed.  For
607 	 * this reason, you should only ever use a toggle reference if there
608 	 * is important state in the proxy object.
609 	 *
610 	 * Params:
611 	 *     notify = a function to call when this reference is the
612 	 *         last reference to the object, or is no longer
613 	 *         the last reference.
614 	 *     data = data to pass to @notify
615 	 *
616 	 * Since: 2.8
617 	 */
618 	public void addToggleRef(GToggleNotify notify, void* data)
619 	{
620 		g_object_add_toggle_ref(gObject, notify, data);
621 	}
622 
623 	/**
624 	 * Adds a weak reference from weak_pointer to @object to indicate that
625 	 * the pointer located at @weak_pointer_location is only valid during
626 	 * the lifetime of @object. When the @object is finalized,
627 	 * @weak_pointer will be set to %NULL.
628 	 *
629 	 * Note that as with g_object_weak_ref(), the weak references created by
630 	 * this method are not thread-safe: they cannot safely be used in one
631 	 * thread if the object's last g_object_unref() might happen in another
632 	 * thread. Use #GWeakRef if thread-safety is required.
633 	 *
634 	 * Params:
635 	 *     weakPointerLocation = The memory address
636 	 *         of a pointer.
637 	 */
638 	public void addWeakPointer(ref void* weakPointerLocation)
639 	{
640 		g_object_add_weak_pointer(gObject, &weakPointerLocation);
641 	}
642 
643 	/**
644 	 * Creates a binding between @source_property on @source and @target_property
645 	 * on @target. Whenever the @source_property is changed the @target_property is
646 	 * updated using the same value. For instance:
647 	 *
648 	 * |[
649 	 * g_object_bind_property (action, "active", widget, "sensitive", 0);
650 	 * ]|
651 	 *
652 	 * Will result in the "sensitive" property of the widget #GObject instance to be
653 	 * updated with the same value of the "active" property of the action #GObject
654 	 * instance.
655 	 *
656 	 * If @flags contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
657 	 * if @target_property on @target changes then the @source_property on @source
658 	 * will be updated as well.
659 	 *
660 	 * The binding will automatically be removed when either the @source or the
661 	 * @target instances are finalized. To remove the binding without affecting the
662 	 * @source and the @target you can just call g_object_unref() on the returned
663 	 * #GBinding instance.
664 	 *
665 	 * A #GObject can have multiple bindings.
666 	 *
667 	 * Params:
668 	 *     sourceProperty = the property on @source to bind
669 	 *     target = the target #GObject
670 	 *     targetProperty = the property on @target to bind
671 	 *     flags = flags to pass to #GBinding
672 	 *
673 	 * Returns: the #GBinding instance representing the
674 	 *     binding between the two #GObject instances. The binding is released
675 	 *     whenever the #GBinding reference count reaches zero.
676 	 *
677 	 * Since: 2.26
678 	 */
679 	public Binding bindProperty(string sourceProperty, ObjectG target, string targetProperty, GBindingFlags flags)
680 	{
681 		auto p = g_object_bind_property(gObject, Str.toStringz(sourceProperty), (target is null) ? null : target.getObjectGStruct(), Str.toStringz(targetProperty), flags);
682 
683 		if(p is null)
684 		{
685 			return null;
686 		}
687 
688 		return ObjectG.getDObject!(Binding)(cast(GBinding*) p);
689 	}
690 
691 	/**
692 	 * Complete version of g_object_bind_property().
693 	 *
694 	 * Creates a binding between @source_property on @source and @target_property
695 	 * on @target, allowing you to set the transformation functions to be used by
696 	 * the binding.
697 	 *
698 	 * If @flags contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
699 	 * if @target_property on @target changes then the @source_property on @source
700 	 * will be updated as well. The @transform_from function is only used in case
701 	 * of bidirectional bindings, otherwise it will be ignored
702 	 *
703 	 * The binding will automatically be removed when either the @source or the
704 	 * @target instances are finalized. To remove the binding without affecting the
705 	 * @source and the @target you can just call g_object_unref() on the returned
706 	 * #GBinding instance.
707 	 *
708 	 * A #GObject can have multiple bindings.
709 	 *
710 	 * The same @user_data parameter will be used for both @transform_to
711 	 * and @transform_from transformation functions; the @notify function will
712 	 * be called once, when the binding is removed. If you need different data
713 	 * for each transformation function, please use
714 	 * g_object_bind_property_with_closures() instead.
715 	 *
716 	 * Params:
717 	 *     sourceProperty = the property on @source to bind
718 	 *     target = the target #GObject
719 	 *     targetProperty = the property on @target to bind
720 	 *     flags = flags to pass to #GBinding
721 	 *     transformTo = the transformation function
722 	 *         from the @source to the @target, or %NULL to use the default
723 	 *     transformFrom = the transformation function
724 	 *         from the @target to the @source, or %NULL to use the default
725 	 *     userData = custom data to be passed to the transformation functions,
726 	 *         or %NULL
727 	 *     notify = function to be called when disposing the binding, to free the
728 	 *         resources used by the transformation functions
729 	 *
730 	 * Returns: the #GBinding instance representing the
731 	 *     binding between the two #GObject instances. The binding is released
732 	 *     whenever the #GBinding reference count reaches zero.
733 	 *
734 	 * Since: 2.26
735 	 */
736 	public Binding bindPropertyFull(string sourceProperty, ObjectG target, string targetProperty, GBindingFlags flags, GBindingTransformFunc transformTo, GBindingTransformFunc transformFrom, void* userData, GDestroyNotify notify)
737 	{
738 		auto p = g_object_bind_property_full(gObject, Str.toStringz(sourceProperty), (target is null) ? null : target.getObjectGStruct(), Str.toStringz(targetProperty), flags, transformTo, transformFrom, userData, notify);
739 
740 		if(p is null)
741 		{
742 			return null;
743 		}
744 
745 		return ObjectG.getDObject!(Binding)(cast(GBinding*) p);
746 	}
747 
748 	/**
749 	 * Creates a binding between @source_property on @source and @target_property
750 	 * on @target, allowing you to set the transformation functions to be used by
751 	 * the binding.
752 	 *
753 	 * This function is the language bindings friendly version of
754 	 * g_object_bind_property_full(), using #GClosures instead of
755 	 * function pointers.
756 	 *
757 	 * Params:
758 	 *     sourceProperty = the property on @source to bind
759 	 *     target = the target #GObject
760 	 *     targetProperty = the property on @target to bind
761 	 *     flags = flags to pass to #GBinding
762 	 *     transformTo = a #GClosure wrapping the transformation function
763 	 *         from the @source to the @target, or %NULL to use the default
764 	 *     transformFrom = a #GClosure wrapping the transformation function
765 	 *         from the @target to the @source, or %NULL to use the default
766 	 *
767 	 * Returns: the #GBinding instance representing the
768 	 *     binding between the two #GObject instances. The binding is released
769 	 *     whenever the #GBinding reference count reaches zero.
770 	 *
771 	 * Since: 2.26
772 	 */
773 	public Binding bindPropertyWithClosures(string sourceProperty, ObjectG target, string targetProperty, GBindingFlags flags, Closure transformTo, Closure transformFrom)
774 	{
775 		auto p = g_object_bind_property_with_closures(gObject, Str.toStringz(sourceProperty), (target is null) ? null : target.getObjectGStruct(), Str.toStringz(targetProperty), flags, (transformTo is null) ? null : transformTo.getClosureStruct(), (transformFrom is null) ? null : transformFrom.getClosureStruct());
776 
777 		if(p is null)
778 		{
779 			return null;
780 		}
781 
782 		return ObjectG.getDObject!(Binding)(cast(GBinding*) p);
783 	}
784 
785 	/**
786 	 * This is a variant of g_object_get_data() which returns
787 	 * a 'duplicate' of the value. @dup_func defines the
788 	 * meaning of 'duplicate' in this context, it could e.g.
789 	 * take a reference on a ref-counted object.
790 	 *
791 	 * If the @key is not set on the object then @dup_func
792 	 * will be called with a %NULL argument.
793 	 *
794 	 * Note that @dup_func is called while user data of @object
795 	 * is locked.
796 	 *
797 	 * This function can be useful to avoid races when multiple
798 	 * threads are using object data on the same key on the same
799 	 * object.
800 	 *
801 	 * Params:
802 	 *     key = a string, naming the user data pointer
803 	 *     dupFunc = function to dup the value
804 	 *     userData = passed as user_data to @dup_func
805 	 *
806 	 * Returns: the result of calling @dup_func on the value
807 	 *     associated with @key on @object, or %NULL if not set.
808 	 *     If @dup_func is %NULL, the value is returned
809 	 *     unmodified.
810 	 *
811 	 * Since: 2.34
812 	 */
813 	public void* dupData(string key, GDuplicateFunc dupFunc, void* userData)
814 	{
815 		return g_object_dup_data(gObject, Str.toStringz(key), dupFunc, userData);
816 	}
817 
818 	/**
819 	 * This is a variant of g_object_get_qdata() which returns
820 	 * a 'duplicate' of the value. @dup_func defines the
821 	 * meaning of 'duplicate' in this context, it could e.g.
822 	 * take a reference on a ref-counted object.
823 	 *
824 	 * If the @quark is not set on the object then @dup_func
825 	 * will be called with a %NULL argument.
826 	 *
827 	 * Note that @dup_func is called while user data of @object
828 	 * is locked.
829 	 *
830 	 * This function can be useful to avoid races when multiple
831 	 * threads are using object data on the same key on the same
832 	 * object.
833 	 *
834 	 * Params:
835 	 *     quark = a #GQuark, naming the user data pointer
836 	 *     dupFunc = function to dup the value
837 	 *     userData = passed as user_data to @dup_func
838 	 *
839 	 * Returns: the result of calling @dup_func on the value
840 	 *     associated with @quark on @object, or %NULL if not set.
841 	 *     If @dup_func is %NULL, the value is returned
842 	 *     unmodified.
843 	 *
844 	 * Since: 2.34
845 	 */
846 	public void* dupQdata(GQuark quark, GDuplicateFunc dupFunc, void* userData)
847 	{
848 		return g_object_dup_qdata(gObject, quark, dupFunc, userData);
849 	}
850 
851 	/**
852 	 * This function is intended for #GObject implementations to re-enforce
853 	 * a [floating][floating-ref] object reference. Doing this is seldom
854 	 * required: all #GInitiallyUnowneds are created with a floating reference
855 	 * which usually just needs to be sunken by calling g_object_ref_sink().
856 	 *
857 	 * Since: 2.10
858 	 */
859 	public void forceFloating()
860 	{
861 		g_object_force_floating(gObject);
862 	}
863 
864 	/**
865 	 * Increases the freeze count on @object. If the freeze count is
866 	 * non-zero, the emission of "notify" signals on @object is
867 	 * stopped. The signals are queued until the freeze count is decreased
868 	 * to zero. Duplicate notifications are squashed so that at most one
869 	 * #GObject::notify signal is emitted for each property modified while the
870 	 * object is frozen.
871 	 *
872 	 * This is necessary for accessors that modify multiple properties to prevent
873 	 * premature notification while the object is still being modified.
874 	 */
875 	public void freezeNotify()
876 	{
877 		g_object_freeze_notify(gObject);
878 	}
879 
880 	/**
881 	 * Gets a named field from the objects table of associations (see g_object_set_data()).
882 	 *
883 	 * Params:
884 	 *     key = name of the key for that association
885 	 *
886 	 * Returns: the data if found, or %NULL if no such data exists.
887 	 */
888 	public void* getData(string key)
889 	{
890 		return g_object_get_data(gObject, Str.toStringz(key));
891 	}
892 
893 	/**
894 	 * Gets a property of an object. @value must have been initialized to the
895 	 * expected type of the property (or a type to which the expected type can be
896 	 * transformed) using g_value_init().
897 	 *
898 	 * In general, a copy is made of the property contents and the caller is
899 	 * responsible for freeing the memory by calling g_value_unset().
900 	 *
901 	 * Note that g_object_get_property() is really intended for language
902 	 * bindings, g_object_get() is much more convenient for C programming.
903 	 *
904 	 * Params:
905 	 *     propertyName = the name of the property to get
906 	 *     value = return location for the property value
907 	 */
908 	public void getProperty(string propertyName, Value value)
909 	{
910 		g_object_get_property(gObject, Str.toStringz(propertyName), (value is null) ? null : value.getValueStruct());
911 	}
912 
913 	/**
914 	 * This function gets back user data pointers stored via
915 	 * g_object_set_qdata().
916 	 *
917 	 * Params:
918 	 *     quark = A #GQuark, naming the user data pointer
919 	 *
920 	 * Returns: The user data pointer set, or %NULL
921 	 */
922 	public void* getQdata(GQuark quark)
923 	{
924 		return g_object_get_qdata(gObject, quark);
925 	}
926 
927 	/**
928 	 * Gets properties of an object.
929 	 *
930 	 * In general, a copy is made of the property contents and the caller
931 	 * is responsible for freeing the memory in the appropriate manner for
932 	 * the type, for instance by calling g_free() or g_object_unref().
933 	 *
934 	 * See g_object_get().
935 	 *
936 	 * Params:
937 	 *     firstPropertyName = name of the first property to get
938 	 *     varArgs = return location for the first property, followed optionally by more
939 	 *         name/return location pairs, followed by %NULL
940 	 */
941 	public void getValist(string firstPropertyName, void* varArgs)
942 	{
943 		g_object_get_valist(gObject, Str.toStringz(firstPropertyName), varArgs);
944 	}
945 
946 	/**
947 	 * Gets @n_properties properties for an @object.
948 	 * Obtained properties will be set to @values. All properties must be valid.
949 	 * Warnings will be emitted and undefined behaviour may result if invalid
950 	 * properties are passed in.
951 	 *
952 	 * Params:
953 	 *     names = the names of each property to get
954 	 *     values = the values of each property to get
955 	 *
956 	 * Since: 2.54
957 	 */
958 	public void getv(string[] names, Value[] values)
959 	{
960 		GValue[] valuesArray = new GValue[values.length];
961 		for ( int i = 0; i < values.length; i++ )
962 		{
963 			valuesArray[i] = *(values[i].getValueStruct());
964 		}
965 
966 		g_object_getv(gObject, cast(uint)values.length, Str.toStringzArray(names), valuesArray.ptr);
967 	}
968 
969 	/**
970 	 * Checks whether @object has a [floating][floating-ref] reference.
971 	 *
972 	 * Returns: %TRUE if @object has a floating reference
973 	 *
974 	 * Since: 2.10
975 	 */
976 	public bool isFloating()
977 	{
978 		return g_object_is_floating(gObject) != 0;
979 	}
980 
981 	/**
982 	 * Emits a "notify" signal for the property @property_name on @object.
983 	 *
984 	 * When possible, eg. when signaling a property change from within the class
985 	 * that registered the property, you should use g_object_notify_by_pspec()
986 	 * instead.
987 	 *
988 	 * Note that emission of the notify signal may be blocked with
989 	 * g_object_freeze_notify(). In this case, the signal emissions are queued
990 	 * and will be emitted (in reverse order) when g_object_thaw_notify() is
991 	 * called.
992 	 *
993 	 * Params:
994 	 *     propertyName = the name of a property installed on the class of @object.
995 	 */
996 	public void notify(string propertyName)
997 	{
998 		g_object_notify(gObject, Str.toStringz(propertyName));
999 	}
1000 
1001 	/**
1002 	 * Emits a "notify" signal for the property specified by @pspec on @object.
1003 	 *
1004 	 * This function omits the property name lookup, hence it is faster than
1005 	 * g_object_notify().
1006 	 *
1007 	 * One way to avoid using g_object_notify() from within the
1008 	 * class that registered the properties, and using g_object_notify_by_pspec()
1009 	 * instead, is to store the GParamSpec used with
1010 	 * g_object_class_install_property() inside a static array, e.g.:
1011 	 *
1012 	 * |[<!-- language="C" -->
1013 	 * enum
1014 	 * {
1015 	 * PROP_0,
1016 	 * PROP_FOO,
1017 	 * PROP_LAST
1018 	 * };
1019 	 *
1020 	 * static GParamSpec *properties[PROP_LAST];
1021 	 *
1022 	 * static void
1023 	 * my_object_class_init (MyObjectClass *klass)
1024 	 * {
1025 	 * properties[PROP_FOO] = g_param_spec_int ("foo", "Foo", "The foo",
1026 	 * 0, 100,
1027 	 * 50,
1028 	 * G_PARAM_READWRITE);
1029 	 * g_object_class_install_property (gobject_class,
1030 	 * PROP_FOO,
1031 	 * properties[PROP_FOO]);
1032 	 * }
1033 	 * ]|
1034 	 *
1035 	 * and then notify a change on the "foo" property with:
1036 	 *
1037 	 * |[<!-- language="C" -->
1038 	 * g_object_notify_by_pspec (self, properties[PROP_FOO]);
1039 	 * ]|
1040 	 *
1041 	 * Params:
1042 	 *     pspec = the #GParamSpec of a property installed on the class of @object.
1043 	 *
1044 	 * Since: 2.26
1045 	 */
1046 	public void notifyByPspec(ParamSpec pspec)
1047 	{
1048 		g_object_notify_by_pspec(gObject, (pspec is null) ? null : pspec.getParamSpecStruct());
1049 	}
1050 
1051 	/**
1052 	 * Increases the reference count of @object.
1053 	 *
1054 	 * Returns: the same @object
1055 	 */
1056 	public ObjectG doref()
1057 	{
1058 		auto p = g_object_ref(gObject);
1059 
1060 		if(p is null)
1061 		{
1062 			return null;
1063 		}
1064 
1065 		return ObjectG.getDObject!(ObjectG)(cast(GObject*) p);
1066 	}
1067 
1068 	/**
1069 	 * Increase the reference count of @object, and possibly remove the
1070 	 * [floating][floating-ref] reference, if @object has a floating reference.
1071 	 *
1072 	 * In other words, if the object is floating, then this call "assumes
1073 	 * ownership" of the floating reference, converting it to a normal
1074 	 * reference by clearing the floating flag while leaving the reference
1075 	 * count unchanged.  If the object is not floating, then this call
1076 	 * adds a new normal reference increasing the reference count by one.
1077 	 *
1078 	 * Returns: @object
1079 	 *
1080 	 * Since: 2.10
1081 	 */
1082 	public ObjectG refSink()
1083 	{
1084 		auto p = g_object_ref_sink(gObject);
1085 
1086 		if(p is null)
1087 		{
1088 			return null;
1089 		}
1090 
1091 		return ObjectG.getDObject!(ObjectG)(cast(GObject*) p);
1092 	}
1093 
1094 	/**
1095 	 * Removes a reference added with g_object_add_toggle_ref(). The
1096 	 * reference count of the object is decreased by one.
1097 	 *
1098 	 * Params:
1099 	 *     notify = a function to call when this reference is the
1100 	 *         last reference to the object, or is no longer
1101 	 *         the last reference.
1102 	 *     data = data to pass to @notify
1103 	 *
1104 	 * Since: 2.8
1105 	 */
1106 	public void removeToggleRef(GToggleNotify notify, void* data)
1107 	{
1108 		g_object_remove_toggle_ref(gObject, notify, data);
1109 	}
1110 
1111 	/**
1112 	 * Removes a weak reference from @object that was previously added
1113 	 * using g_object_add_weak_pointer(). The @weak_pointer_location has
1114 	 * to match the one used with g_object_add_weak_pointer().
1115 	 *
1116 	 * Params:
1117 	 *     weakPointerLocation = The memory address
1118 	 *         of a pointer.
1119 	 */
1120 	public void removeWeakPointer(ref void* weakPointerLocation)
1121 	{
1122 		g_object_remove_weak_pointer(gObject, &weakPointerLocation);
1123 	}
1124 
1125 	/**
1126 	 * Compares the user data for the key @key on @object with
1127 	 * @oldval, and if they are the same, replaces @oldval with
1128 	 * @newval.
1129 	 *
1130 	 * This is like a typical atomic compare-and-exchange
1131 	 * operation, for user data on an object.
1132 	 *
1133 	 * If the previous value was replaced then ownership of the
1134 	 * old value (@oldval) is passed to the caller, including
1135 	 * the registered destroy notify for it (passed out in @old_destroy).
1136 	 * Its up to the caller to free this as he wishes, which may
1137 	 * or may not include using @old_destroy as sometimes replacement
1138 	 * should not destroy the object in the normal way.
1139 	 *
1140 	 * Params:
1141 	 *     key = a string, naming the user data pointer
1142 	 *     oldval = the old value to compare against
1143 	 *     newval = the new value
1144 	 *     destroy = a destroy notify for the new value
1145 	 *     oldDestroy = destroy notify for the existing value
1146 	 *
1147 	 * Returns: %TRUE if the existing value for @key was replaced
1148 	 *     by @newval, %FALSE otherwise.
1149 	 *
1150 	 * Since: 2.34
1151 	 */
1152 	public bool replaceData(string key, void* oldval, void* newval, GDestroyNotify destroy, GDestroyNotify* oldDestroy)
1153 	{
1154 		return g_object_replace_data(gObject, Str.toStringz(key), oldval, newval, destroy, oldDestroy) != 0;
1155 	}
1156 
1157 	/**
1158 	 * Compares the user data for the key @quark on @object with
1159 	 * @oldval, and if they are the same, replaces @oldval with
1160 	 * @newval.
1161 	 *
1162 	 * This is like a typical atomic compare-and-exchange
1163 	 * operation, for user data on an object.
1164 	 *
1165 	 * If the previous value was replaced then ownership of the
1166 	 * old value (@oldval) is passed to the caller, including
1167 	 * the registered destroy notify for it (passed out in @old_destroy).
1168 	 * Its up to the caller to free this as he wishes, which may
1169 	 * or may not include using @old_destroy as sometimes replacement
1170 	 * should not destroy the object in the normal way.
1171 	 *
1172 	 * Params:
1173 	 *     quark = a #GQuark, naming the user data pointer
1174 	 *     oldval = the old value to compare against
1175 	 *     newval = the new value
1176 	 *     destroy = a destroy notify for the new value
1177 	 *     oldDestroy = destroy notify for the existing value
1178 	 *
1179 	 * Returns: %TRUE if the existing value for @quark was replaced
1180 	 *     by @newval, %FALSE otherwise.
1181 	 *
1182 	 * Since: 2.34
1183 	 */
1184 	public bool replaceQdata(GQuark quark, void* oldval, void* newval, GDestroyNotify destroy, GDestroyNotify* oldDestroy)
1185 	{
1186 		return g_object_replace_qdata(gObject, quark, oldval, newval, destroy, oldDestroy) != 0;
1187 	}
1188 
1189 	/**
1190 	 * Releases all references to other objects. This can be used to break
1191 	 * reference cycles.
1192 	 *
1193 	 * This function should only be called from object system implementations.
1194 	 */
1195 	public void runDispose()
1196 	{
1197 		g_object_run_dispose(gObject);
1198 	}
1199 
1200 	/**
1201 	 * Each object carries around a table of associations from
1202 	 * strings to pointers.  This function lets you set an association.
1203 	 *
1204 	 * If the object already had an association with that name,
1205 	 * the old association will be destroyed.
1206 	 *
1207 	 * Params:
1208 	 *     key = name of the key
1209 	 *     data = data to associate with that key
1210 	 */
1211 	public void setData(string key, void* data)
1212 	{
1213 		g_object_set_data(gObject, Str.toStringz(key), data);
1214 	}
1215 
1216 	/**
1217 	 * Like g_object_set_data() except it adds notification
1218 	 * for when the association is destroyed, either by setting it
1219 	 * to a different value or when the object is destroyed.
1220 	 *
1221 	 * Note that the @destroy callback is not called if @data is %NULL.
1222 	 *
1223 	 * Params:
1224 	 *     key = name of the key
1225 	 *     data = data to associate with that key
1226 	 *     destroy = function to call when the association is destroyed
1227 	 */
1228 	public void setDataFull(string key, void* data, GDestroyNotify destroy)
1229 	{
1230 		g_object_set_data_full(gObject, Str.toStringz(key), data, destroy);
1231 	}
1232 
1233 	/**
1234 	 * Sets a property on an object.
1235 	 *
1236 	 * Params:
1237 	 *     propertyName = the name of the property to set
1238 	 *     value = the value
1239 	 */
1240 	public void setProperty(string propertyName, Value value)
1241 	{
1242 		g_object_set_property(gObject, Str.toStringz(propertyName), (value is null) ? null : value.getValueStruct());
1243 	}
1244 
1245 	/**
1246 	 * This sets an opaque, named pointer on an object.
1247 	 * The name is specified through a #GQuark (retrived e.g. via
1248 	 * g_quark_from_static_string()), and the pointer
1249 	 * can be gotten back from the @object with g_object_get_qdata()
1250 	 * until the @object is finalized.
1251 	 * Setting a previously set user data pointer, overrides (frees)
1252 	 * the old pointer set, using #NULL as pointer essentially
1253 	 * removes the data stored.
1254 	 *
1255 	 * Params:
1256 	 *     quark = A #GQuark, naming the user data pointer
1257 	 *     data = An opaque user data pointer
1258 	 */
1259 	public void setQdata(GQuark quark, void* data)
1260 	{
1261 		g_object_set_qdata(gObject, quark, data);
1262 	}
1263 
1264 	/**
1265 	 * This function works like g_object_set_qdata(), but in addition,
1266 	 * a void (*destroy) (gpointer) function may be specified which is
1267 	 * called with @data as argument when the @object is finalized, or
1268 	 * the data is being overwritten by a call to g_object_set_qdata()
1269 	 * with the same @quark.
1270 	 *
1271 	 * Params:
1272 	 *     quark = A #GQuark, naming the user data pointer
1273 	 *     data = An opaque user data pointer
1274 	 *     destroy = Function to invoke with @data as argument, when @data
1275 	 *         needs to be freed
1276 	 */
1277 	public void setQdataFull(GQuark quark, void* data, GDestroyNotify destroy)
1278 	{
1279 		g_object_set_qdata_full(gObject, quark, data, destroy);
1280 	}
1281 
1282 	/**
1283 	 * Sets properties on an object.
1284 	 *
1285 	 * Params:
1286 	 *     firstPropertyName = name of the first property to set
1287 	 *     varArgs = value for the first property, followed optionally by more
1288 	 *         name/value pairs, followed by %NULL
1289 	 */
1290 	public void setValist(string firstPropertyName, void* varArgs)
1291 	{
1292 		g_object_set_valist(gObject, Str.toStringz(firstPropertyName), varArgs);
1293 	}
1294 
1295 	/**
1296 	 * Sets @n_properties properties for an @object.
1297 	 * Properties to be set will be taken from @values. All properties must be
1298 	 * valid. Warnings will be emitted and undefined behaviour may result if invalid
1299 	 * properties are passed in.
1300 	 *
1301 	 * Params:
1302 	 *     names = the names of each property to be set
1303 	 *     values = the values of each property to be set
1304 	 *
1305 	 * Since: 2.54
1306 	 */
1307 	public void setv(string[] names, Value[] values)
1308 	{
1309 		GValue[] valuesArray = new GValue[values.length];
1310 		for ( int i = 0; i < values.length; i++ )
1311 		{
1312 			valuesArray[i] = *(values[i].getValueStruct());
1313 		}
1314 
1315 		g_object_setv(gObject, cast(uint)values.length, Str.toStringzArray(names), valuesArray.ptr);
1316 	}
1317 
1318 	/**
1319 	 * Remove a specified datum from the object's data associations,
1320 	 * without invoking the association's destroy handler.
1321 	 *
1322 	 * Params:
1323 	 *     key = name of the key
1324 	 *
1325 	 * Returns: the data if found, or %NULL if no such data exists.
1326 	 */
1327 	public void* stealData(string key)
1328 	{
1329 		return g_object_steal_data(gObject, Str.toStringz(key));
1330 	}
1331 
1332 	/**
1333 	 * This function gets back user data pointers stored via
1334 	 * g_object_set_qdata() and removes the @data from object
1335 	 * without invoking its destroy() function (if any was
1336 	 * set).
1337 	 * Usually, calling this function is only required to update
1338 	 * user data pointers with a destroy notifier, for example:
1339 	 * |[<!-- language="C" -->
1340 	 * void
1341 	 * object_add_to_user_list (GObject     *object,
1342 	 * const gchar *new_string)
1343 	 * {
1344 	 * // the quark, naming the object data
1345 	 * GQuark quark_string_list = g_quark_from_static_string ("my-string-list");
1346 	 * // retrive the old string list
1347 	 * GList *list = g_object_steal_qdata (object, quark_string_list);
1348 	 *
1349 	 * // prepend new string
1350 	 * list = g_list_prepend (list, g_strdup (new_string));
1351 	 * // this changed 'list', so we need to set it again
1352 	 * g_object_set_qdata_full (object, quark_string_list, list, free_string_list);
1353 	 * }
1354 	 * static void
1355 	 * free_string_list (gpointer data)
1356 	 * {
1357 	 * GList *node, *list = data;
1358 	 *
1359 	 * for (node = list; node; node = node->next)
1360 	 * g_free (node->data);
1361 	 * g_list_free (list);
1362 	 * }
1363 	 * ]|
1364 	 * Using g_object_get_qdata() in the above example, instead of
1365 	 * g_object_steal_qdata() would have left the destroy function set,
1366 	 * and thus the partial string list would have been freed upon
1367 	 * g_object_set_qdata_full().
1368 	 *
1369 	 * Params:
1370 	 *     quark = A #GQuark, naming the user data pointer
1371 	 *
1372 	 * Returns: The user data pointer set, or %NULL
1373 	 */
1374 	public void* stealQdata(GQuark quark)
1375 	{
1376 		return g_object_steal_qdata(gObject, quark);
1377 	}
1378 
1379 	/**
1380 	 * Reverts the effect of a previous call to
1381 	 * g_object_freeze_notify(). The freeze count is decreased on @object
1382 	 * and when it reaches zero, queued "notify" signals are emitted.
1383 	 *
1384 	 * Duplicate notifications for each property are squashed so that at most one
1385 	 * #GObject::notify signal is emitted for each property, in the reverse order
1386 	 * in which they have been queued.
1387 	 *
1388 	 * It is an error to call this function when the freeze count is zero.
1389 	 */
1390 	public void thawNotify()
1391 	{
1392 		g_object_thaw_notify(gObject);
1393 	}
1394 
1395 	/**
1396 	 * Decreases the reference count of @object. When its reference count
1397 	 * drops to 0, the object is finalized (i.e. its memory is freed).
1398 	 *
1399 	 * If the pointer to the #GObject may be reused in future (for example, if it is
1400 	 * an instance variable of another object), it is recommended to clear the
1401 	 * pointer to %NULL rather than retain a dangling pointer to a potentially
1402 	 * invalid #GObject instance. Use g_clear_object() for this.
1403 	 */
1404 	public void unref()
1405 	{
1406 		g_object_unref(gObject);
1407 	}
1408 
1409 	/**
1410 	 * This function essentially limits the life time of the @closure to
1411 	 * the life time of the object. That is, when the object is finalized,
1412 	 * the @closure is invalidated by calling g_closure_invalidate() on
1413 	 * it, in order to prevent invocations of the closure with a finalized
1414 	 * (nonexisting) object. Also, g_object_ref() and g_object_unref() are
1415 	 * added as marshal guards to the @closure, to ensure that an extra
1416 	 * reference count is held on @object during invocation of the
1417 	 * @closure.  Usually, this function will be called on closures that
1418 	 * use this @object as closure data.
1419 	 *
1420 	 * Params:
1421 	 *     closure = GClosure to watch
1422 	 */
1423 	public void watchClosure(Closure closure)
1424 	{
1425 		g_object_watch_closure(gObject, (closure is null) ? null : closure.getClosureStruct());
1426 	}
1427 
1428 	/**
1429 	 * Adds a weak reference callback to an object. Weak references are
1430 	 * used for notification when an object is finalized. They are called
1431 	 * "weak references" because they allow you to safely hold a pointer
1432 	 * to an object without calling g_object_ref() (g_object_ref() adds a
1433 	 * strong reference, that is, forces the object to stay alive).
1434 	 *
1435 	 * Note that the weak references created by this method are not
1436 	 * thread-safe: they cannot safely be used in one thread if the
1437 	 * object's last g_object_unref() might happen in another thread.
1438 	 * Use #GWeakRef if thread-safety is required.
1439 	 *
1440 	 * Params:
1441 	 *     notify = callback to invoke before the object is freed
1442 	 *     data = extra data to pass to notify
1443 	 */
1444 	public void weakRef(GWeakNotify notify, void* data)
1445 	{
1446 		g_object_weak_ref(gObject, notify, data);
1447 	}
1448 
1449 	/**
1450 	 * Removes a weak reference callback to an object.
1451 	 *
1452 	 * Params:
1453 	 *     notify = callback to search for
1454 	 *     data = data to search for
1455 	 */
1456 	public void weakUnref(GWeakNotify notify, void* data)
1457 	{
1458 		g_object_weak_unref(gObject, notify, data);
1459 	}
1460 
1461 	/**
1462 	 * Clears a reference to a #GObject.
1463 	 *
1464 	 * @object_ptr must not be %NULL.
1465 	 *
1466 	 * If the reference is %NULL then this function does nothing.
1467 	 * Otherwise, the reference count of the object is decreased and the
1468 	 * pointer is set to %NULL.
1469 	 *
1470 	 * A macro is also included that allows this function to be used without
1471 	 * pointer casts.
1472 	 *
1473 	 * Params:
1474 	 *     objectPtr = a pointer to a #GObject reference
1475 	 *
1476 	 * Since: 2.28
1477 	 */
1478 	public static void clearObject(ref ObjectG objectPtr)
1479 	{
1480 		GObject* outobjectPtr = objectPtr.getObjectGStruct();
1481 
1482 		g_clear_object(&outobjectPtr);
1483 
1484 		objectPtr = ObjectG.getDObject!(ObjectG)(outobjectPtr);
1485 	}
1486 }