Sets our main struct and passes it to the parent class.
Creates a new TreeModel, with childModel as the child model.
This function should almost never be called. It clears the @tree_model_sort of any cached iterators that haven’t been reffed with gtk_tree_model_ref_node(). This might be useful if the child model being sorted is static (and doesn’t change often) and there has been a lot of unreffed access to nodes. As a side effect of this function, all unreffed iters will be invalid.
Sets @sort_iter to point to the row in @tree_model_sort that corresponds to the row pointed at by @child_iter. If @sort_iter was not set, %FALSE is returned. Note: a boolean is only returned since 2.14.
Converts @child_path to a path relative to @tree_model_sort. That is, @child_path points to a path in the child model. The returned path will point to the same row in the sorted model. If @child_path isn’t a valid path on the child model, then %NULL is returned.
Sets @child_iter to point to the row pointed to by @sorted_iter.
Converts @sorted_path to a path on the child model of @tree_model_sort. That is, @sorted_path points to a location in @tree_model_sort. The returned path will point to the same location in the model not being sorted. If @sorted_path does not point to a location in the child model, %NULL is returned.
Returns the model the #GtkTreeModelSort is sorting.
the main Gtk struct as a void*
Get the main Gtk struct
> This function is slow. Only use it for debugging and/or testing > purposes.
This resets the default sort function to be in the “unsorted” state. That is, it is in the same order as the child model. It will re-sort the model to be in the same order as the child model only if the #GtkTreeModelSort is in “unsorted” state.
the main Gtk struct
the main Gtk struct
Get the main Gtk struct
the main Gtk struct as a void*
Gets a D Object from the objects table of associations.
The notify signal is emitted on an object when one of its properties has been changed. Note that getting this signal doesn't guarantee that the value of the property has actually changed, it may also be emitted when the setter for the property is called to reinstate the previous value.
Find the #GParamSpec with the given name for an interface. Generally, the interface vtable passed in as @g_iface will be the default vtable from g_type_default_interface_ref(), or, if you know the interface has already been loaded, g_type_default_interface_peek().
Add a property to an interface; this is only useful for interfaces that are added to GObject-derived types. Adding a property to an interface forces all objects classes with that interface to have a compatible property. The compatible property could be a newly created #GParamSpec, but normally g_object_class_override_property() will be used so that the object class only needs to provide an implementation and inherits the property description, default value, bounds, and so forth from the interface property.
Lists the properties of an interface.Generally, the interface vtable passed in as @g_iface will be the default vtable from g_type_default_interface_ref(), or, if you know the interface has already been loaded, g_type_default_interface_peek().
Increases the reference count of the object by one and sets a callback to be called when all other references to the object are dropped, or when this is already the last reference to the object and another reference is established.
Adds a weak reference from weak_pointer to @object to indicate that the pointer located at @weak_pointer_location is only valid during the lifetime of @object. When the @object is finalized, @weak_pointer will be set to %NULL.
Creates a binding between @source_property on @source and @target_property on @target. Whenever the @source_property is changed the @target_property is updated using the same value. For instance:
Complete version of g_object_bind_property().
Creates a binding between @source_property on @source and @target_property on @target, allowing you to set the transformation functions to be used by the binding.
This is a variant of g_object_get_data() which returns a 'duplicate' of the value. @dup_func defines the meaning of 'duplicate' in this context, it could e.g. take a reference on a ref-counted object.
This is a variant of g_object_get_qdata() which returns a 'duplicate' of the value. @dup_func defines the meaning of 'duplicate' in this context, it could e.g. take a reference on a ref-counted object.
This function is intended for #GObject implementations to re-enforce a floating[floating-ref] object reference. Doing this is seldom required: all #GInitiallyUnowneds are created with a floating reference which usually just needs to be sunken by calling g_object_ref_sink().
Increases the freeze count on @object. If the freeze count is non-zero, the emission of "notify" signals on @object is stopped. The signals are queued until the freeze count is decreased to zero. Duplicate notifications are squashed so that at most one #GObject::notify signal is emitted for each property modified while the object is frozen.
Gets a named field from the objects table of associations (see g_object_set_data()).
Gets a property of an object. @value must have been initialized to the expected type of the property (or a type to which the expected type can be transformed) using g_value_init().
This function gets back user data pointers stored via g_object_set_qdata().
Gets properties of an object.
Checks whether @object has a floating[floating-ref] reference.
Emits a "notify" signal for the property @property_name on @object.
Emits a "notify" signal for the property specified by @pspec on @object.
Increases the reference count of @object.
Increase the reference count of @object, and possibly remove the floating[floating-ref] reference, if @object has a floating reference.
Removes a reference added with g_object_add_toggle_ref(). The reference count of the object is decreased by one.
Removes a weak reference from @object that was previously added using g_object_add_weak_pointer(). The @weak_pointer_location has to match the one used with g_object_add_weak_pointer().
Compares the user data for the key @key on @object with @oldval, and if they are the same, replaces @oldval with @newval.
Compares the user data for the key @quark on @object with @oldval, and if they are the same, replaces @oldval with @newval.
Releases all references to other objects. This can be used to break reference cycles.
Each object carries around a table of associations from strings to pointers. This function lets you set an association.
Like g_object_set_data() except it adds notification for when the association is destroyed, either by setting it to a different value or when the object is destroyed.
Sets a property on an object.
This sets an opaque, named pointer on an object. The name is specified through a #GQuark (retrived e.g. via g_quark_from_static_string()), and the pointer can be gotten back from the @object with g_object_get_qdata() until the @object is finalized. Setting a previously set user data pointer, overrides (frees) the old pointer set, using #NULL as pointer essentially removes the data stored.
This function works like g_object_set_qdata(), but in addition, a void (*destroy) (gpointer) function may be specified which is called with @data as argument when the @object is finalized, or the data is being overwritten by a call to g_object_set_qdata() with the same @quark.
Sets properties on an object.
Remove a specified datum from the object's data associations, without invoking the association's destroy handler.
This function gets back user data pointers stored via g_object_set_qdata() and removes the @data from object without invoking its destroy() function (if any was set). Usually, calling this function is only required to update user data pointers with a destroy notifier, for example: |[<!-- language="C" --> void object_add_to_user_list (GObject *object, const gchar *new_string) { // the quark, naming the object data GQuark quark_string_list = g_quark_from_static_string ("my-string-list"); // retrive the old string list GList *list = g_object_steal_qdata (object, quark_string_list);
Reverts the effect of a previous call to g_object_freeze_notify(). The freeze count is decreased on @object and when it reaches zero, queued "notify" signals are emitted.
Decreases the reference count of @object. When its reference count drops to 0, the object is finalized (i.e. its memory is freed).
This function essentially limits the life time of the @closure to the life time of the object. That is, when the object is finalized, the @closure is invalidated by calling g_closure_invalidate() on it, in order to prevent invocations of the closure with a finalized (nonexisting) object. Also, g_object_ref() and g_object_unref() are added as marshal guards to the @closure, to ensure that an extra reference count is held on @object during invocation of the @closure. Usually, this function will be called on closures that use this @object as closure data.
Adds a weak reference callback to an object. Weak references are used for notification when an object is finalized. They are called "weak references" because they allow you to safely hold a pointer to an object without calling g_object_ref() (g_object_ref() adds a strong reference, that is, forces the object to stay alive).
Removes a weak reference callback to an object.
Clears a reference to a #GObject.
Get the main Gtk struct
the main Gtk struct as a void*
Asks the #GtkTreeDragSource to delete the row at @path, because it was moved somewhere else via drag-and-drop. Returns %FALSE if the deletion fails because @path no longer exists, or for some model-specific reason. Should robustly handle a @path no longer found in the model!
Asks the #GtkTreeDragSource to fill in @selection_data with a representation of the row at @path. @selection_data->target gives the required type of the data. Should robustly handle a @path no longer found in the model!
Asks the #GtkTreeDragSource whether a particular row can be used as the source of a DND operation. If the source doesn’t implement this interface, the row is assumed draggable.
Obtains a @tree_model and @path from selection data of target type %GTK_TREE_MODEL_ROW. Normally called from a drag_data_received handler. This function can only be used if @selection_data originates from the same process that’s calling this function, because a pointer to the tree model is being passed around. If you aren’t in the same process, then you'll get memory corruption. In the #GtkTreeDragDest drag_data_received handler, you can assume that selection data of type %GTK_TREE_MODEL_ROW is in from the current process. The returned path must be freed with gtk_tree_path_free().
Sets selection data of target type %GTK_TREE_MODEL_ROW. Normally used in a drag_data_get handler.
Get the main Gtk struct
the main Gtk struct as a void*
Get the value of a column as a char array. this is the same calling getValue and get the string from the value object
Get the value of a column as a char array. this is the same calling getValue and get the int from the value object
Sets iter to a valid iterator pointing to path.
Initializes and sets value to that at column. When done with value, g_value_unset() needs to be called to free any allocated memory.
Creates a new #GtkTreeModel, with @child_model as the child_model and @root as the virtual root.
Calls func on each node in model in a depth-first fashion.
Returns the type of the column.
Returns a set of flags supported by this interface.
Initializes @iter with the first iterator in the tree (the one at the path "0") and returns %TRUE. Returns %FALSE if the tree is empty.
Sets @iter to a valid iterator pointing to @path_string, if it exists. Otherwise, @iter is left invalid and %FALSE is returned.
Returns the number of columns supported by @tree_model.
Returns a newly-created #GtkTreePath-struct referenced by @iter.
Generates a string representation of the iter.
See gtk_tree_model_get(), this version takes a va_list for language bindings to use.
Sets @iter to point to the first child of @parent.
Returns %TRUE if @iter has children, %FALSE otherwise.
Returns the number of children that @iter has.
Sets @iter to point to the node following it at the current level.
Sets @iter to be the child of @parent, using the given index.
Sets @iter to be the parent of @child.
Sets @iter to point to the previous node at the current level.
Lets the tree ref the node.
Emits the #GtkTreeModel::row-changed signal on @tree_model.
Emits the #GtkTreeModel::row-deleted signal on @tree_model.
Emits the #GtkTreeModel::row-has-child-toggled signal on @tree_model. This should be called by models after the child state of a node changes.
Emits the #GtkTreeModel::row-inserted signal on @tree_model.
Emits the #GtkTreeModel::rows-reordered signal on @tree_model.
Emits the #GtkTreeModel::rows-reordered signal on @tree_model.
Creates a new #GtkTreeModel, with @child_model as the child model.
Lets the tree unref the node.
This signal is emitted when a row in the model has changed.
This signal is emitted when a row has been deleted.
This signal is emitted when a row has gotten the first child row or lost its last child row.
This signal is emitted when a new row has been inserted in the model.
This signal is emitted when the children of a node in the #GtkTreeModel have been reordered.
Get the main Gtk struct
the main Gtk struct as a void*
Fills in @sort_column_id and @order with the current sort column and the order. It returns %TRUE unless the @sort_column_id is %GTK_TREE_SORTABLE_DEFAULT_SORT_COLUMN_ID or %GTK_TREE_SORTABLE_UNSORTED_SORT_COLUMN_ID.
Returns %TRUE if the model has a default sort function. This is used primarily by GtkTreeViewColumns in order to determine if a model can go back to the default state, or not.
Sets the default comparison function used when sorting to be @sort_func. If the current sort column id of @sortable is %GTK_TREE_SORTABLE_DEFAULT_SORT_COLUMN_ID, then the model will sort using this function.
Sets the current sort column to be @sort_column_id. The @sortable will resort itself to reflect this change, after emitting a #GtkTreeSortable::sort-column-changed signal. @sort_column_id may either be a regular column id, or one of the following special values:
Sets the comparison function used when sorting to be @sort_func. If the current sort column id of @sortable is the same as @sort_column_id, then the model will sort using this function.
Emits a #GtkTreeSortable::sort-column-changed signal on @sortable.
The ::sort-column-changed signal is emitted when the sort column or sort order of @sortable is changed. The signal is emitted before the contents of @sortable are resorted.
The #GtkTreeModelSort is a model which implements the #GtkTreeSortable interface. It does not hold any data itself, but rather is created with a child model and proxies its data. It has identical column types to this child model, and the changes in the child are propagated. The primary purpose of this model is to provide a way to sort a different model without modifying it. Note that the sort function used by #GtkTreeModelSort is not guaranteed to be stable.
The use of this is best demonstrated through an example. In the following sample code we create two #GtkTreeView widgets each with a view of the same data. As the model is wrapped here by a #GtkTreeModelSort, the two #GtkTreeViews can each sort their view of the data without affecting the other. By contrast, if we simply put the same model in each widget, then sorting the first would sort the second.
Using a #GtkTreeModelSort
|[<!-- language="C" --> { GtkTreeView *tree_view1; GtkTreeView *tree_view2; GtkTreeModel *sort_model1; GtkTreeModel *sort_model2; GtkTreeModel *child_model;
// get the child model child_model = get_my_model ();
// Create the first tree sort_model1 = gtk_tree_model_sort_new_with_model (child_model); tree_view1 = gtk_tree_view_new_with_model (sort_model1);
// Create the second tree sort_model2 = gtk_tree_model_sort_new_with_model (child_model); tree_view2 = gtk_tree_view_new_with_model (sort_model2);
// Now we can sort the two models independently gtk_tree_sortable_set_sort_column_id (GTK_TREE_SORTABLE (sort_model1), COLUMN_1, GTK_SORT_ASCENDING); gtk_tree_sortable_set_sort_column_id (GTK_TREE_SORTABLE (sort_model2), COLUMN_1, GTK_SORT_DESCENDING); } ]|
To demonstrate how to access the underlying child model from the sort model, the next example will be a callback for the #GtkTreeSelection #GtkTreeSelection::changed signal. In this callback, we get a string from COLUMN_1 of the model. We then modify the string, find the same selected row on the child model, and change the row there.
Accessing the child model of in a selection changed callback
|[<!-- language="C" --> void selection_changed (GtkTreeSelection *selection, gpointer data) { GtkTreeModel *sort_model = NULL; GtkTreeModel *child_model; GtkTreeIter sort_iter; GtkTreeIter child_iter; char *some_data = NULL; char *modified_data;
// Get the current selected row and the model. if (! gtk_tree_selection_get_selected (selection, &sort_model, &sort_iter)) return;
// Look up the current value on the selected row and get // a new value to change it to. gtk_tree_model_get (GTK_TREE_MODEL (sort_model), &sort_iter, COLUMN_1, &some_data, -1);
modified_data = change_the_data (some_data); g_free (some_data);
// Get an iterator on the child model, instead of the sort model. gtk_tree_model_sort_convert_iter_to_child_iter (GTK_TREE_MODEL_SORT (sort_model), &child_iter, &sort_iter);
// Get the child model and change the value of the row. In this // example, the child model is a GtkListStore. It could be any other // type of model, though. child_model = gtk_tree_model_sort_get_model (GTK_TREE_MODEL_SORT (sort_model)); gtk_list_store_set (GTK_LIST_STORE (child_model), &child_iter, COLUMN_1, &modified_data, -1); g_free (modified_data); } ]|