ActionGroup

Actions are organised into groups. An action group is essentially a map from names to #GtkAction objects.

All actions that would make sense to use in a particular context should be in a single group. Multiple action groups may be used for a particular user interface. In fact, it is expected that most nontrivial applications will make use of multiple groups. For example, in an application that can edit multiple documents, one group holding global actions (e.g. quit, about, new), and one group per document holding actions that act on that document (eg. save, cut/copy/paste, etc). Each window’s menus would be constructed from a combination of two action groups.

Accelerators ## {#Action-Accel}

Accelerators are handled by the GTK+ accelerator map. All actions are assigned an accelerator path (which normally has the form <Actions>/group-name/action-name) and a shortcut is associated with this accelerator path. All menuitems and toolitems take on this accelerator path. The GTK+ accelerator map code makes sure that the correct shortcut is displayed next to the menu item.

GtkActionGroup as GtkBuildable # {#GtkActionGroup-BUILDER-UI}

The #GtkActionGroup implementation of the #GtkBuildable interface accepts #GtkAction objects as <child> elements in UI definitions.

Note that it is probably more common to define actions and action groups in the code, since they are directly related to what the code can do.

The GtkActionGroup implementation of the GtkBuildable interface supports a custom <accelerator> element, which has attributes named “key“ and “modifiers“ and allows to specify accelerators. This is similar to the <accelerator> element of #GtkWidget, the main difference is that it doesn’t allow you to specify a signal.

## A #GtkDialog UI definition fragment. ## |[ <object class="GtkActionGroup" id="actiongroup"> <child> <object class="GtkAction" id="About"> <property name="name">About</property> <property name="stock_id">gtk-about</property> <signal handler="about_activate" name="activate"/> </object> <accelerator key="F1" modifiers="GDK_CONTROL_MASK | GDK_SHIFT_MASK"/> </child> </object> ]|

class ActionGroup : ObjectG , BuildableIF {}

Constructors

this
this(GtkActionGroup* gtkActionGroup, bool ownedRef)

Sets our main struct and passes it to the parent class.

this
this(string name)

Creates a new #GtkActionGroup object. The name of the action group is used when associating keybindings[Action-Accel] with the actions.

Members

Functions

addAction
void addAction(Action action)

Adds an action object to the action group. Note that this function does not set up the accel path of the action, which can lead to problems if a user tries to modify the accelerator of a menuitem associated with the action. Therefore you must either set the accel path yourself with gtk_action_set_accel_path(), or use gtk_action_group_add_action_with_accel (..., NULL).

addActionWithAccel
void addActionWithAccel(Action action, string accelerator)

Adds an action object to the action group and sets up the accelerator.

addActions
void addActions(GtkActionEntry[] entries, void* userData)

This is a convenience function to create a number of actions and add them to the action group.

addActionsFull
void addActionsFull(GtkActionEntry[] entries, void* userData, GDestroyNotify destroy)

This variant of gtk_action_group_add_actions() adds a #GDestroyNotify callback for @user_data.

addOnConnectProxy
void addOnConnectProxy(void delegate(Action, Widget, ActionGroup) dlg, ConnectFlags connectFlags)

The ::connect-proxy signal is emitted after connecting a proxy to an action in the group. Note that the proxy may have been connected to a different action before.

addOnDisconnectProxy
void addOnDisconnectProxy(void delegate(Action, Widget, ActionGroup) dlg, ConnectFlags connectFlags)

The ::disconnect-proxy signal is emitted after disconnecting a proxy from an action in the group.

addOnPostActivate
void addOnPostActivate(void delegate(Action, ActionGroup) dlg, ConnectFlags connectFlags)

The ::post-activate signal is emitted just after the @action in the @action_group is activated

addOnPreActivate
void addOnPreActivate(void delegate(Action, ActionGroup) dlg, ConnectFlags connectFlags)

The ::pre-activate signal is emitted just before the @action in the @action_group is activated

addRadioActions
void addRadioActions(GtkRadioActionEntry[] entries, int value, GCallback onChange, void* userData)

This is a convenience routine to create a group of radio actions and add them to the action group.

addRadioActionsFull
void addRadioActionsFull(GtkRadioActionEntry[] entries, int value, GCallback onChange, void* userData, GDestroyNotify destroy)

This variant of gtk_action_group_add_radio_actions() adds a #GDestroyNotify callback for @user_data.

addToggleActions
void addToggleActions(GtkToggleActionEntry[] entries, void* userData)

This is a convenience function to create a number of toggle actions and add them to the action group.

addToggleActionsFull
void addToggleActionsFull(GtkToggleActionEntry[] entries, void* userData, GDestroyNotify destroy)

This variant of gtk_action_group_add_toggle_actions() adds a #GDestroyNotify callback for @user_data.

getAccelGroup
AccelGroup getAccelGroup()

Gets the accelerator group.

getAction
Action getAction(string actionName)

Looks up an action in the action group by name.

getActionGroupStruct
GtkActionGroup* getActionGroupStruct()

Get the main Gtk struct

getName
string getName()

Gets the name of the action group.

getSensitive
bool getSensitive()

Returns %TRUE if the group is sensitive. The constituent actions can only be logically sensitive (see gtk_action_is_sensitive()) if they are sensitive (see gtk_action_get_sensitive()) and their group is sensitive.

getStruct
void* getStruct()

the main Gtk struct as a void*

getVisible
bool getVisible()

Returns %TRUE if the group is visible. The constituent actions can only be logically visible (see gtk_action_is_visible()) if they are visible (see gtk_action_get_visible()) and their group is visible.

listActions
ListG listActions()

Lists the actions in the action group.

removeAction
void removeAction(Action action)

Removes an action object from the action group.

setAccelGroup
void setAccelGroup(AccelGroup accelGroup)

Sets the accelerator group to be used by every action in this group.

setSensitive
void setSensitive(bool sensitive)

Changes the sensitivity of @action_group

setStruct
void setStruct(GObject* obj)
Undocumented in source. Be warned that the author may not have intended to support it.
setTranslateFunc
void setTranslateFunc(GtkTranslateFunc func, void* data, GDestroyNotify notify)

Sets a function to be used for translating the @label and @tooltip of #GtkActionEntrys added by gtk_action_group_add_actions().

setTranslationDomain
void setTranslationDomain(string domain)

Sets the translation domain and uses g_dgettext() for translating the @label and @tooltip of #GtkActionEntrys added by gtk_action_group_add_actions().

setVisible
void setVisible(bool visible)

Changes the visible of @action_group.

translateString
string translateString(string str)

Translates a string using the function set with gtk_action_group_set_translate_func(). This is mainly intended for language bindings.

Mixins

__anonymous
mixin BuildableT!(GtkActionGroup)
Undocumented in source.

Static functions

callBackConnectProxy
void callBackConnectProxy(GtkActionGroup* actiongroupStruct, GtkAction* action, GtkWidget* proxy, ActionGroup _actiongroup)
Undocumented in source. Be warned that the author may not have intended to support it.
callBackDisconnectProxy
void callBackDisconnectProxy(GtkActionGroup* actiongroupStruct, GtkAction* action, GtkWidget* proxy, ActionGroup _actiongroup)
Undocumented in source. Be warned that the author may not have intended to support it.
callBackPostActivate
void callBackPostActivate(GtkActionGroup* actiongroupStruct, GtkAction* action, ActionGroup _actiongroup)
Undocumented in source. Be warned that the author may not have intended to support it.
callBackPreActivate
void callBackPreActivate(GtkActionGroup* actiongroupStruct, GtkAction* action, ActionGroup _actiongroup)
Undocumented in source. Be warned that the author may not have intended to support it.
getType
GType getType()

Variables

connectedSignals
int[string] connectedSignals;
Undocumented in source.
gtkActionGroup
GtkActionGroup* gtkActionGroup;

the main Gtk struct

onConnectProxyListeners
void delegate(Action, Widget, ActionGroup)[] onConnectProxyListeners;
Undocumented in source.
onDisconnectProxyListeners
void delegate(Action, Widget, ActionGroup)[] onDisconnectProxyListeners;
Undocumented in source.
onPostActivateListeners
void delegate(Action, ActionGroup)[] onPostActivateListeners;
Undocumented in source.
onPreActivateListeners
void delegate(Action, ActionGroup)[] onPreActivateListeners;
Undocumented in source.

Inherited Members

From ObjectG

gObject
GObject* gObject;

the main Gtk struct

ownedRef
bool ownedRef;
Undocumented in source.
getObjectGStruct
GObject* getObjectGStruct()

Get the main Gtk struct

getStruct
void* getStruct()

the main Gtk struct as a void*

isGcRoot
bool isGcRoot;
Undocumented in source.
destroyNotify
void destroyNotify(ObjectG obj)
Undocumented in source. Be warned that the author may not have intended to support it.
toggleNotify
void toggleNotify(ObjectG obj, GObject* object, int isLastRef)
Undocumented in source. Be warned that the author may not have intended to support it.
~this
~this()
Undocumented in source.
getDObject
RT getDObject(U obj, bool ownedRef)

Gets a D Object from the objects table of associations.

setStruct
void setStruct(GObject* obj)
Undocumented in source. Be warned that the author may not have intended to support it.
setProperty
void setProperty(string propertyName, int value)
setProperty
void setProperty(string propertyName, string value)
setProperty
void setProperty(string propertyName, long value)
setProperty
void setProperty(string propertyName, ulong value)
unref
deprecated void unref(ObjectG obj)
Undocumented in source. Be warned that the author may not have intended to support it.
doref
deprecated ObjectG doref(ObjectG obj)
Undocumented in source. Be warned that the author may not have intended to support it.
connectedSignals
int[string] connectedSignals;
Undocumented in source.
onNotifyListeners
void delegate(ParamSpec, ObjectG)[] onNotifyListeners;
Undocumented in source.
addOnNotify
void addOnNotify(void delegate(ParamSpec, ObjectG) dlg, string property, ConnectFlags connectFlags)

The notify signal is emitted on an object when one of its properties has been changed. Note that getting this signal doesn't guarantee that the value of the property has actually changed, it may also be emitted when the setter for the property is called to reinstate the previous value.

callBackNotify
void callBackNotify(GObject* gobjectStruct, GParamSpec* pspec, ObjectG _objectG)
Undocumented in source. Be warned that the author may not have intended to support it.
getType
GType getType()
compatControl
size_t compatControl(size_t what, void* data)
interfaceFindProperty
ParamSpec interfaceFindProperty(TypeInterface gIface, string propertyName)

Find the #GParamSpec with the given name for an interface. Generally, the interface vtable passed in as @g_iface will be the default vtable from g_type_default_interface_ref(), or, if you know the interface has already been loaded, g_type_default_interface_peek().

interfaceInstallProperty
void interfaceInstallProperty(TypeInterface gIface, ParamSpec pspec)

Add a property to an interface; this is only useful for interfaces that are added to GObject-derived types. Adding a property to an interface forces all objects classes with that interface to have a compatible property. The compatible property could be a newly created #GParamSpec, but normally g_object_class_override_property() will be used so that the object class only needs to provide an implementation and inherits the property description, default value, bounds, and so forth from the interface property.

interfaceListProperties
ParamSpec[] interfaceListProperties(TypeInterface gIface)

Lists the properties of an interface.Generally, the interface vtable passed in as @g_iface will be the default vtable from g_type_default_interface_ref(), or, if you know the interface has already been loaded, g_type_default_interface_peek().

addToggleRef
void addToggleRef(GToggleNotify notify, void* data)

Increases the reference count of the object by one and sets a callback to be called when all other references to the object are dropped, or when this is already the last reference to the object and another reference is established.

addWeakPointer
void addWeakPointer(void* weakPointerLocation)

Adds a weak reference from weak_pointer to @object to indicate that the pointer located at @weak_pointer_location is only valid during the lifetime of @object. When the @object is finalized, @weak_pointer will be set to %NULL.

bindProperty
Binding bindProperty(string sourceProperty, ObjectG target, string targetProperty, GBindingFlags flags)

Creates a binding between @source_property on @source and @target_property on @target. Whenever the @source_property is changed the @target_property is updated using the same value. For instance:

bindPropertyFull
Binding bindPropertyFull(string sourceProperty, ObjectG target, string targetProperty, GBindingFlags flags, GBindingTransformFunc transformTo, GBindingTransformFunc transformFrom, void* userData, GDestroyNotify notify)

Complete version of g_object_bind_property().

bindPropertyWithClosures
Binding bindPropertyWithClosures(string sourceProperty, ObjectG target, string targetProperty, GBindingFlags flags, Closure transformTo, Closure transformFrom)

Creates a binding between @source_property on @source and @target_property on @target, allowing you to set the transformation functions to be used by the binding.

dupData
void* dupData(string key, GDuplicateFunc dupFunc, void* userData)

This is a variant of g_object_get_data() which returns a 'duplicate' of the value. @dup_func defines the meaning of 'duplicate' in this context, it could e.g. take a reference on a ref-counted object.

dupQdata
void* dupQdata(GQuark quark, GDuplicateFunc dupFunc, void* userData)

This is a variant of g_object_get_qdata() which returns a 'duplicate' of the value. @dup_func defines the meaning of 'duplicate' in this context, it could e.g. take a reference on a ref-counted object.

forceFloating
void forceFloating()

This function is intended for #GObject implementations to re-enforce a floating[floating-ref] object reference. Doing this is seldom required: all #GInitiallyUnowneds are created with a floating reference which usually just needs to be sunken by calling g_object_ref_sink().

freezeNotify
void freezeNotify()

Increases the freeze count on @object. If the freeze count is non-zero, the emission of "notify" signals on @object is stopped. The signals are queued until the freeze count is decreased to zero. Duplicate notifications are squashed so that at most one #GObject::notify signal is emitted for each property modified while the object is frozen.

getData
void* getData(string key)

Gets a named field from the objects table of associations (see g_object_set_data()).

getProperty
void getProperty(string propertyName, Value value)

Gets a property of an object. @value must have been initialized to the expected type of the property (or a type to which the expected type can be transformed) using g_value_init().

getQdata
void* getQdata(GQuark quark)

This function gets back user data pointers stored via g_object_set_qdata().

getValist
void getValist(string firstPropertyName, void* varArgs)

Gets properties of an object.

isFloating
bool isFloating()

Checks whether @object has a floating[floating-ref] reference.

notify
void notify(string propertyName)

Emits a "notify" signal for the property @property_name on @object.

notifyByPspec
void notifyByPspec(ParamSpec pspec)

Emits a "notify" signal for the property specified by @pspec on @object.

doref
ObjectG doref()

Increases the reference count of @object.

refSink
ObjectG refSink()

Increase the reference count of @object, and possibly remove the floating[floating-ref] reference, if @object has a floating reference.

removeToggleRef
void removeToggleRef(GToggleNotify notify, void* data)

Removes a reference added with g_object_add_toggle_ref(). The reference count of the object is decreased by one.

removeWeakPointer
void removeWeakPointer(void* weakPointerLocation)

Removes a weak reference from @object that was previously added using g_object_add_weak_pointer(). The @weak_pointer_location has to match the one used with g_object_add_weak_pointer().

replaceData
bool replaceData(string key, void* oldval, void* newval, GDestroyNotify destroy, GDestroyNotify* oldDestroy)

Compares the user data for the key @key on @object with @oldval, and if they are the same, replaces @oldval with @newval.

replaceQdata
bool replaceQdata(GQuark quark, void* oldval, void* newval, GDestroyNotify destroy, GDestroyNotify* oldDestroy)

Compares the user data for the key @quark on @object with @oldval, and if they are the same, replaces @oldval with @newval.

runDispose
void runDispose()

Releases all references to other objects. This can be used to break reference cycles.

setData
void setData(string key, void* data)

Each object carries around a table of associations from strings to pointers. This function lets you set an association.

setDataFull
void setDataFull(string key, void* data, GDestroyNotify destroy)

Like g_object_set_data() except it adds notification for when the association is destroyed, either by setting it to a different value or when the object is destroyed.

setProperty
void setProperty(string propertyName, Value value)

Sets a property on an object.

setQdata
void setQdata(GQuark quark, void* data)

This sets an opaque, named pointer on an object. The name is specified through a #GQuark (retrived e.g. via g_quark_from_static_string()), and the pointer can be gotten back from the @object with g_object_get_qdata() until the @object is finalized. Setting a previously set user data pointer, overrides (frees) the old pointer set, using #NULL as pointer essentially removes the data stored.

setQdataFull
void setQdataFull(GQuark quark, void* data, GDestroyNotify destroy)

This function works like g_object_set_qdata(), but in addition, a void (*destroy) (gpointer) function may be specified which is called with @data as argument when the @object is finalized, or the data is being overwritten by a call to g_object_set_qdata() with the same @quark.

setValist
void setValist(string firstPropertyName, void* varArgs)

Sets properties on an object.

stealData
void* stealData(string key)

Remove a specified datum from the object's data associations, without invoking the association's destroy handler.

stealQdata
void* stealQdata(GQuark quark)

This function gets back user data pointers stored via g_object_set_qdata() and removes the @data from object without invoking its destroy() function (if any was set). Usually, calling this function is only required to update user data pointers with a destroy notifier, for example: |[<!-- language="C" --> void object_add_to_user_list (GObject *object, const gchar *new_string) { // the quark, naming the object data GQuark quark_string_list = g_quark_from_static_string ("my-string-list"); // retrive the old string list GList *list = g_object_steal_qdata (object, quark_string_list);

thawNotify
void thawNotify()

Reverts the effect of a previous call to g_object_freeze_notify(). The freeze count is decreased on @object and when it reaches zero, queued "notify" signals are emitted.

unref
void unref()

Decreases the reference count of @object. When its reference count drops to 0, the object is finalized (i.e. its memory is freed).

watchClosure
void watchClosure(Closure closure)

This function essentially limits the life time of the @closure to the life time of the object. That is, when the object is finalized, the @closure is invalidated by calling g_closure_invalidate() on it, in order to prevent invocations of the closure with a finalized (nonexisting) object. Also, g_object_ref() and g_object_unref() are added as marshal guards to the @closure, to ensure that an extra reference count is held on @object during invocation of the @closure. Usually, this function will be called on closures that use this @object as closure data.

weakRef
void weakRef(GWeakNotify notify, void* data)

Adds a weak reference callback to an object. Weak references are used for notification when an object is finalized. They are called "weak references" because they allow you to safely hold a pointer to an object without calling g_object_ref() (g_object_ref() adds a strong reference, that is, forces the object to stay alive).

weakUnref
void weakUnref(GWeakNotify notify, void* data)

Removes a weak reference callback to an object.

clearObject
void clearObject(ObjectG objectPtr)

Clears a reference to a #GObject.

From BuildableIF

getBuildableStruct
GtkBuildable* getBuildableStruct()

Get the main Gtk struct

getStruct
void* getStruct()

the main Gtk struct as a void*

addChild
void addChild(Builder builder, ObjectG child, string type)

Adds a child to @buildable. @type is an optional string describing how the child should be added.

constructChild
ObjectG constructChild(Builder builder, string name)

Constructs a child of @buildable with the name @name.

customFinished
void customFinished(Builder builder, ObjectG child, string tagname, void* data)

This is similar to gtk_buildable_parser_finished() but is called once for each custom tag handled by the @buildable.

customTagEnd
void customTagEnd(Builder builder, ObjectG child, string tagname, void** data)

This is called at the end of each custom element handled by the buildable.

customTagStart
bool customTagStart(Builder builder, ObjectG child, string tagname, GMarkupParser parser, void* data)

This is called for each unknown element under <child>.

getInternalChild
ObjectG getInternalChild(Builder builder, string childname)

Get the internal child called @childname of the @buildable object.

buildableGetName
string buildableGetName()

Gets the name of the @buildable object.

parserFinished
void parserFinished(Builder builder)

Called when the builder finishes the parsing of a [GtkBuilder UI definition][BUILDER-UI]. Note that this will be called once for each time gtk_builder_add_from_file() or gtk_builder_add_from_string() is called on a builder.

setBuildableProperty
void setBuildableProperty(Builder builder, string name, Value value)

Sets the property name @name to @value on the @buildable object.

buildableSetName
void buildableSetName(string name)

Sets the name of the @buildable object.

Meta