Sets our main struct and passes it to the parent class
Creates a new action. The created action is stateless. See g_simple_action_new_stateful(). Since 2.28
Creates a new stateful action. state is the initial state of the action. All future state values must have the same GVariantType as the initial state. If the state GVariant is floating, it is consumed. Since 2.28
Indicates that the action was just activated. parameter will always be of the expected type. In the event that an incorrect type was given, no signal will be emitted. Since 2.28
Indicates that the action just received a request to change its state. value will always be of the correct state type. In the event that an incorrect type was given, no signal will be emitted. If no handler is connected to this signal then the default behaviour is to call g_simple_action_set_state() to set the state to the requested value. If you connect a signal handler then no default action is taken. If the state should change then you must call g_simple_action_set_state() from the handler.
the main Gtk struct as a void*
Sets the action as enabled or not. An action must be enabled in order to be activated or in order to have its state changed from outside callers. This should only be called by the implementor of the action. Users of the action should not attempt to modify its enabled flag. Since 2.28
Sets the state of the action. This directly updates the 'state' property to the given value. This should only be called by the implementor of the action. Users of the action should not attempt to directly modify the 'state' property. Instead, they should call g_action_change_state() to request the change. If the value GVariant is floating, it is consumed. Since 2.30
the main Gtk struct
the main Gtk struct
the main Gtk struct as a void*
Gets a D Object from the objects table of associations.
The notify signal is emitted on an object when one of its properties has been changed. Note that getting this signal doesn't guarantee that the value of the property has actually changed, it may also be emitted when the setter for the property is called to reinstate the previous value.
Installs a new property. This is usually done in the class initializer. Note that it is possible to redefine a property in a derived class, by installing a property with the same name. This can be useful at times, e.g. to change the range of allowed values or the default value.
Installs new properties from an array of GParamSpecs. This is usually done in the class initializer. The property id of each property is the index of each GParamSpec in the pspecs array. The property id of 0 is treated specially by GObject and it should not be used to store a GParamSpec. This function should be used if you plan to use a static array of GParamSpecs and g_object_notify_by_pspec(). For instance, this Since 2.26
Looks up the GParamSpec for a property of a class.
Get an array of GParamSpec* for all properties of a class.
Registers property_id as referring to a property with the name name in a parent class or in an interface implemented by oclass. This allows this class to override a property implementation in a parent class or to provide the implementation of a property from an interface. Note Internally, overriding is implemented by creating a property of type GParamSpecOverride; generally operations that query the properties of the object class, such as g_object_class_find_property() or g_object_class_list_properties() will return the overridden property. However, in one case, the construct_properties argument of the constructor virtual function, the GParamSpecOverride is passed instead, so that the param_id field of the GParamSpec will be correct. For virtually all uses, this makes no difference. If you need to get the overridden property, you can call g_param_spec_get_redirect_target(). Since 2.4
Add a property to an interface; this is only useful for interfaces that are added to GObject-derived types. Adding a property to an interface forces all objects classes with that interface to have a compatible property. The compatible property could be a newly created GParamSpec, but normally g_object_class_override_property() will be used so that the object class only needs to provide an implementation and inherits the property description, default value, bounds, and so forth from the interface property. This function is meant to be called from the interface's default vtable initialization function (the class_init member of GTypeInfo.) It must not be called after after class_init has been called for any object types implementing this interface. Since 2.4
Find the GParamSpec with the given name for an interface. Generally, the interface vtable passed in as g_iface will be the default vtable from g_type_default_interface_ref(), or, if you know the interface has already been loaded, g_type_default_interface_peek(). Since 2.4
Lists the properties of an interface.Generally, the interface vtable passed in as g_iface will be the default vtable from g_type_default_interface_ref(), or, if you know the interface has already been loaded, g_type_default_interface_peek(). Since 2.4
Increases the reference count of object.
Decreases the reference count of object. When its reference count drops to 0, the object is finalized (i.e. its memory is freed).
Increase the reference count of object, and possibly remove the floating reference, if object has a floating reference. In other words, if the object is floating, then this call "assumes ownership" of the floating reference, converting it to a normal reference by clearing the floating flag while leaving the reference count unchanged. If the object is not floating, then this call adds a new normal reference increasing the reference count by one. Since 2.10
Clears a reference to a GObject. object_ptr must not be NULL. If the reference is NULL then this function does nothing. Otherwise, the reference count of the object is decreased and the pointer is set to NULL. This function is threadsafe and modifies the pointer atomically, using memory barriers where needed. A macro is also included that allows this function to be used without pointer casts. Since 2.28
Checks whether object has a floating reference. Since 2.10
This function is intended for GObject implementations to re-enforce a floating object reference. Doing this is seldom required: all GInitiallyUnowneds are created with a floating reference which usually just needs to be sunken by calling g_object_ref_sink(). Since 2.10
Adds a weak reference callback to an object. Weak references are used for notification when an object is finalized. They are called "weak references" because they allow you to safely hold a pointer to an object without calling g_object_ref() (g_object_ref() adds a strong reference, that is, forces the object to stay alive). Note that the weak references created by this method are not thread-safe: they cannot safely be used in one thread if the object's last g_object_unref() might happen in another thread. Use GWeakRef if thread-safety is required.
Removes a weak reference callback to an object.
Adds a weak reference from weak_pointer to object to indicate that the pointer located at weak_pointer_location is only valid during the lifetime of object. When the object is finalized, weak_pointer will be set to NULL. Note that as with g_object_weak_ref(), the weak references created by this method are not thread-safe: they cannot safely be used in one thread if the object's last g_object_unref() might happen in another thread. Use GWeakRef if thread-safety is required.
Removes a weak reference from object that was previously added using g_object_add_weak_pointer(). The weak_pointer_location has to match the one used with g_object_add_weak_pointer().
Increases the reference count of the object by one and sets a callback to be called when all other references to the object are dropped, or when this is already the last reference to the object and another reference is established. This functionality is intended for binding object to a proxy object managed by another memory manager. This is done with two paired references: the strong reference added by g_object_add_toggle_ref() and a reverse reference to the proxy object which is either a strong reference or weak reference. The setup is that when there are no other references to object, only a weak reference is held in the reverse direction from object to the proxy object, but when there are other references held to object, a strong reference is held. The notify callback is called when the reference from object to the proxy object should be toggled from strong to weak (is_last_ref true) or weak to strong (is_last_ref false). Since a (normal) reference must be held to the object before calling g_object_add_toggle_ref(), the initial state of the reverse link is always strong. Multiple toggle references may be added to the same gobject, however if there are multiple toggle references to an object, none of them will ever be notified until all but one are removed. For this reason, you should only ever use a toggle reference if there is important state in the proxy object. Since 2.8
Removes a reference added with g_object_add_toggle_ref(). The reference count of the object is decreased by one. Since 2.8
Emits a "notify" signal for the property property_name on object. When possible, eg. when signaling a property change from within the class that registered the property, you should use g_object_notify_by_pspec() instead.
Emits a "notify" signal for the property specified by pspec on object. This function omits the property name lookup, hence it is faster than g_object_notify(). One way to avoid using g_object_notify() from within the class that registered the properties, and using g_object_notify_by_pspec() instead, is to store the GParamSpec used with Since 2.26
Increases the freeze count on object. If the freeze count is non-zero, the emission of "notify" signals on object is stopped. The signals are queued until the freeze count is decreased to zero. Duplicate notifications are squashed so that at most one "notify" signal is emitted for each property modified while the object is frozen. This is necessary for accessors that modify multiple properties to prevent premature notification while the object is still being modified.
Reverts the effect of a previous call to g_object_freeze_notify(). The freeze count is decreased on object and when it reaches zero, queued "notify" signals are emitted. Duplicate notifications for each property are squashed so that at most one "notify" signal is emitted for each property. It is an error to call this function when the freeze count is zero.
Gets a named field from the objects table of associations (see g_object_set_data()).
Each object carries around a table of associations from strings to pointers. This function lets you set an association. If the object already had an association with that name, the old association will be destroyed.
Like g_object_set_data() except it adds notification for when the association is destroyed, either by setting it to a different value or when the object is destroyed. Note that the destroy callback is not called if data is NULL.
Remove a specified datum from the object's data associations, without invoking the association's destroy handler.
This is a variant of g_object_get_data() which returns a 'duplicate' of the value. dup_func defines the meaning of 'duplicate' in this context, it could e.g. take a reference on a ref-counted object. If the key is not set on the object then dup_func will be called with a NULL argument. Note that dup_func is called while user data of object is locked. This function can be useful to avoid races when multiple threads are using object data on the same key on the same object. Since 2.34
Compares the user data for the key key on object with oldval, and if they are the same, replaces oldval with newval. This is like a typical atomic compare-and-exchange operation, for user data on an object. If the previous value was replaced then ownership of the old value (oldval) is passed to the caller, including the registered destroy notify for it (passed out in old_destroy). Its up to the caller to free this as he wishes, which may or may not include using old_destroy as sometimes replacement should not destroy the object in the normal way. Return: TRUE if the existing value for key was replaced by newval, FALSE otherwise. Since 2.34
This function gets back user data pointers stored via g_object_set_qdata().
This sets an opaque, named pointer on an object. The name is specified through a GQuark (retrived e.g. via g_quark_from_static_string()), and the pointer can be gotten back from the object with g_object_get_qdata() until the object is finalized. Setting a previously set user data pointer, overrides (frees) the old pointer set, using NULL as pointer essentially removes the data stored.
This function works like g_object_set_qdata(), but in addition, a void (*destroy) (gpointer) function may be specified which is called with data as argument when the object is finalized, or the data is being overwritten by a call to g_object_set_qdata() with the same quark.
This function gets back user data pointers stored via g_object_set_qdata() and removes the data from object without invoking its destroy() function (if any was set). Usually, calling this function is only required to update
This is a variant of g_object_get_qdata() which returns a 'duplicate' of the value. dup_func defines the meaning of 'duplicate' in this context, it could e.g. take a reference on a ref-counted object. If the quark is not set on the object then dup_func will be called with a NULL argument. Note that dup_func is called while user data of object is locked. This function can be useful to avoid races when multiple threads are using object data on the same key on the same object. Since 2.34
Compares the user data for the key quark on object with oldval, and if they are the same, replaces oldval with newval. This is like a typical atomic compare-and-exchange operation, for user data on an object. If the previous value was replaced then ownership of the old value (oldval) is passed to the caller, including the registered destroy notify for it (passed out in old_destroy). Its up to the caller to free this as he wishes, which may or may not include using old_destroy as sometimes replacement should not destroy the object in the normal way. Return: TRUE if the existing value for quark was replaced by newval, FALSE otherwise. Since 2.34
Sets a property on an object.
Gets a property of an object. value must have been initialized to the expected type of the property (or a type to which the expected type can be transformed) using g_value_init(). In general, a copy is made of the property contents and the caller is responsible for freeing the memory by calling g_value_unset(). Note that g_object_get_property() is really intended for language bindings, g_object_get() is much more convenient for C programming.
Sets properties on an object.
Gets properties of an object. In general, a copy is made of the property contents and the caller is responsible for freeing the memory in the appropriate manner for the type, for instance by calling g_free() or g_object_unref(). See g_object_get().
This function essentially limits the life time of the closure to the life time of the object. That is, when the object is finalized, the closure is invalidated by calling g_closure_invalidate() on it, in order to prevent invocations of the closure with a finalized (nonexisting) object. Also, g_object_ref() and g_object_unref() are added as marshal guards to the closure, to ensure that an extra reference count is held on object during invocation of the closure. Usually, this function will be called on closures that use this object as closure data.
Releases all references to other objects. This can be used to break reference cycles. This functions should only be called from object system implementations.
the main Gtk struct as a void*
Checks if action_name is valid. action_name is valid if it consists only of alphanumeric characters, plus '-' and '.'. The empty string is not a valid action name. It is an error to call this function with a non-utf8 action_name. action_name must not be NULL. Since 2.38
Queries the name of action. Since 2.28
Queries the type of the parameter that must be given when activating action. When activating the action using g_action_activate(), the GVariant given to that function must be of the type returned by this function. In the case that this function returns NULL, you must not give any GVariant, but NULL instead. Since 2.28
Queries the type of the state of action. If the action is stateful (e.g. created with g_simple_action_new_stateful()) then this function returns the GVariantType of the state. This is the type of the initial value given as the state. All calls to g_action_change_state() must give a GVariant of this type and g_action_get_state() will return a GVariant of the same type. If the action is not stateful (e.g. created with g_simple_action_new()) then this function will return NULL. In that case, g_action_get_state() will return NULL and you must not call g_action_change_state(). Since 2.28
Requests a hint about the valid range of values for the state of action. If NULL is returned it either means that the action is not stateful or that there is no hint about the valid range of values for the state of the action. If a GVariant array is returned then each item in the array is a possible value for the state. If a GVariant pair (ie: two-tuple) is returned then the tuple specifies the inclusive lower and upper bound of valid values for the state. In any case, the information is merely a hint. It may be possible to have a state value outside of the hinted range and setting a value within the range may fail. The return value (if non-NULL) should be freed with g_variant_unref() when it is no longer required. Since 2.28
Checks if action is currently enabled. An action must be enabled in order to be activated or in order to have its state changed from outside callers. Since 2.28
Queries the current state of action. If the action is not stateful then NULL will be returned. If the action is stateful then the type of the return value is the type given by g_action_get_state_type(). The return value (if non-NULL) should be freed with g_variant_unref() when it is no longer required. Since 2.28
Request for the state of action to be changed to value. The action must be stateful and value must be of the correct type. See g_action_get_state_type(). This call merely requests a change. The action may refuse to change its state or may change its state to something other than value. See g_action_get_state_hint(). If the value GVariant is floating, it is consumed. Since 2.30
Activates the action. Since 2.28
Parses a detailed action name into its separate name and target components. Detailed action names can have three formats. The first format is used to represent an action name with no target value and consists of just an action name containing no whitespace nor the characters ':', '(' or ')'. For example: "app.action". The second format is used to represent an action with a target value that is a non-empty string consisting only of alphanumerics, plus '-' and '.'. In that case, the action name and target value are separated by a double colon ("::"). For example: "app.action::target". The third format is used to represent an action with any type of target value, including strings. The target value follows the action name, surrounded in parens. For example: "app.action(42)". The target value is parsed using g_variant_parse(). If a tuple-typed value is desired, it must be specified in the same way, resulting in two sets of parens, for example: "app.action((1,2,3))". A string target can be specified this way as well: "app.action('target')". For strings, this third format must be used if * target value is empty or contains characters other than alphanumerics, '-' and '.'. Since 2.38
Formats a detailed action name from action_name and target_value. It is an error to call this function with an invalid action name. This function is the opposite of g_action_parse_detailed_action_name(). It will produce a string that can be parsed back to the action_name and target_value by that function. See that function for the types of strings that will be printed by this function. Since 2.38
A GSimpleAction is the obvious simple implementation of the GAction interface. This is the easiest way to create an action for purposes of adding it to a GSimpleActionGroup.
See also GtkAction.