1 /*
2  * This file is part of gtkD.
3  *
4  * gtkD is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU Lesser General Public License
6  * as published by the Free Software Foundation; either version 3
7  * of the License, or (at your option) any later version, with
8  * some exceptions, please read the COPYING file.
9  *
10  * gtkD is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU Lesser General Public License for more details.
14  *
15  * You should have received a copy of the GNU Lesser General Public License
16  * along with gtkD; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110, USA
18  */
19  
20 // generated automatically - do not change
21 // find conversion definition on APILookup.txt
22 // implement new conversion functionalities on the wrap.utils pakage
23 
24 /*
25  * Conversion parameters:
26  * inFile  = gobject-The-Base-Object-Type.html
27  * outPack = gobject
28  * outFile = ObjectG
29  * strct   = GObject
30  * realStrct=
31  * ctorStrct=
32  * clss    = ObjectG
33  * interf  = 
34  * class Code: Yes
35  * interface Code: No
36  * template for:
37  * extend  = 
38  * implements:
39  * prefixes:
40  * 	- g_object_
41  * 	- g_
42  * omit structs:
43  * 	- GObject
44  * 	- GObjectClass
45  * omit prefixes:
46  * omit code:
47  * omit signals:
48  * imports:
49  * 	- gobject.ObjectG
50  * 	- gobject.ParamSpec
51  * 	- gobject.Value
52  * 	- gobject.Closure
53  * 	- std.gc
54  * 	- glib.Str
55  * 	- gtkc.paths
56  * 	- gtkc.Loader
57  * structWrap:
58  * 	- GClosure* -> Closure
59  * 	- GObject* -> ObjectG
60  * 	- GParamSpec* -> ParamSpec
61  * 	- GValue* -> Value
62  * module aliases:
63  * local aliases:
64  * overrides:
65  */
66 
67 module gobject.ObjectG;
68 
69 public  import gtkc.gobjecttypes;
70 
71 private import gtkc.gobject;
72 private import glib.ConstructionException;
73 private import gobject.ObjectG;
74 
75 private import gobject.Signals;
76 public  import gtkc.gdktypes;
77 
78 private import gobject.ObjectG;
79 private import gobject.ParamSpec;
80 private import gobject.Value;
81 private import gobject.Closure;
82 private import glib.Str;
83 private import gtkc.paths;
84 private import gtkc.Loader;
85 
86 
87 version(Tango) {
88 	private import tango.core.Memory;
89 
90 	version = druntime;
91 } else version(D_Version2) {
92 	private import core.memory;
93 
94 	version = druntime;
95 } else {
96 	private import std.gc;
97 }
98 
99 
100 
101 /**
102  * Description
103  * GObject is the fundamental type providing the common attributes and
104  * methods for all object types in GTK+, Pango and other libraries
105  * based on GObject. The GObject class provides methods for object
106  * construction and destruction, property access methods, and signal
107  * support. Signals are described in detail in Signals(3).
108  * GInitiallyUnowned is derived from GObject. The only difference between
109  * the two is that the initial reference of a GInitiallyUnowned is flagged
110  * as a floating reference.
111  * This means that it is not specifically claimed to be "owned" by
112  * any code portion. The main motivation for providing floating references is
113  * C convenience. In particular, it allows code to be written as:
114  * $(DDOC_COMMENT example)
115  * If container_add_child() will g_object_ref_sink() the
116  * passed in child, no reference of the newly created child is leaked.
117  * Without floating references, container_add_child()
118  * can only g_object_ref() the new child, so to implement this code without
119  * reference leaks, it would have to be written as:
120  * $(DDOC_COMMENT example)
121  * The floating reference can be converted into
122  * an ordinary reference by calling g_object_ref_sink().
123  * For already sunken objects (objects that don't have a floating reference
124  * anymore), g_object_ref_sink() is equivalent to g_object_ref() and returns
125  * a new reference.
126  * Since floating references are useful almost exclusively for C convenience,
127  * language bindings that provide automated reference and memory ownership
128  * maintenance (such as smart pointers or garbage collection) therefore don't
129  * need to expose floating references in their API.
130  * Some object implementations may need to save an objects floating state
131  * across certain code portions (an example is GtkMenu), to achive this, the
132  * following sequence can be used:
133  * $(DDOC_COMMENT example)
134  */
135 public class ObjectG
136 {
137 	
138 	/** the main Gtk struct */
139 	protected GObject* gObject;
140 	
141 	
142 	public GObject* getObjectGStruct()
143 	{
144 		return gObject;
145 	}
146 	
147 	
148 	/** the main Gtk struct as a void* */
149 	protected void* getStruct()
150 	{
151 		return cast(void*)gObject;
152 	}
153 	
154 	
155 	protected bool isGcRoot;
156 	
157 	/**
158 	 * Sets our main struct and passes store it on the gobject.
159 	 * Add a gabage collector root to the gtk+ struct so it doesn't get collect
160 	 */
161 	public this (GObject* gObject)
162 	{
163 		this.gObject = gObject;
164 		if ( gObject !is  null )
165 		{
166 			setDataFull("GObject", cast(void*)this, cast(GDestroyNotify)&destroyNotify);
167 			addToggleRef(cast(GToggleNotify)&toggleNotify, cast(void*)this);
168 			
169 			//If the refCount is largeer then 1 toggleNotify isn't called
170 			if (gObject.refCount > 1 && !isGcRoot)
171 			{
172 				version(druntime) GC.addRoot(cast(void*)this);
173 				else std.gc.addRoot(cast(void*)this);
174 				
175 				isGcRoot = true;
176 			}
177 			
178 			//Remove the floating reference if there is one.
179 			if (isFloating(gObject))
180 			{
181 				refSink(gObject);
182 				unref(gObject);
183 			}
184 			
185 			//When constructed via GtkBuilder set the structs.
186 			if ( getStruct() is null)
187 			{
188 				setStruct(gObject);
189 			}
190 		}
191 	}
192 	
193 	extern(C)
194 	{
195 		static void destroyNotify(ObjectG obj)
196 		{
197 			if ( obj.isGcRoot )
198 			{
199 				version(druntime) GC.removeRoot(cast(void*)obj);
200 				else std.gc.removeRoot(cast(void*)obj);
201 				
202 				obj.isGcRoot = false;
203 			}
204 			
205 			obj.gObject = null;
206 		}
207 		
208 		static void toggleNotify(ObjectG obj, GObject* object, int isLastRef)
209 		{
210 			if ( isLastRef && obj.isGcRoot )
211 			{
212 				version(druntime) GC.removeRoot(cast(void*)obj);
213 				else std.gc.removeRoot(cast(void*)obj);
214 				
215 				obj.isGcRoot = false;
216 			}
217 			else if ( !obj.isGcRoot )
218 			{
219 				version(druntime) GC.addRoot(cast(void*)obj);
220 				else std.gc.addRoot(cast(void*)obj);
221 				
222 				obj.isGcRoot = true;
223 			}
224 		}
225 	}
226 	
227 	~this()
228 	{
229 		if ( Linker.isLoaded(LIBRARY.GOBJECT) && gObject !is null )
230 		{
231 			unref();
232 		}
233 	}
234 	
235 	/**
236 	 * Gets a D Object from the objects table of associations.
237 	 * Params:
238 	 *  obj = GObject containing the associations.
239 	 * Returns: the D Object if found, or a newly constructed object if no such Object exists.
240 	 */
241 	public static RT getDObject(T, RT=T, U)(U obj)
242 	{
243 		if ( obj is null )
244 		{
245 			return null;
246 		}
247 		
248 		static if ( is(T : ObjectG) )
249 		{
250 			auto p = g_object_get_data(cast(GObject*)obj, Str.toStringz("GObject"));
251 			
252 			if ( p !is null )
253 			{
254 				static if ( is(RT == interface ) )
255 				{
256 					return cast(RT)cast(ObjectG)p;
257 				}
258 				else
259 				{
260 					return cast(RT)p;
261 				}
262 			}
263 			else
264 			{
265 				return new T(obj);
266 			}
267 		}
268 		else
269 		{
270 			return new T(obj);
271 		}
272 	}
273 	
274 	protected void setStruct(GObject* obj)
275 	{
276 		gObject = cast(GObject*)obj;
277 	}
278 	
279 	/** */
280 	public void setProperty(string propertyName, int value)
281 	{
282 		setProperty(propertyName, new Value(value));
283 	}
284 	
285 	/** */
286 	public void setProperty(string propertyName, string value)
287 	{
288 		setProperty(propertyName, new Value(value));
289 	}
290 	
291 	/** */
292 	public void setProperty(string propertyName, long value)
293 	{
294 		//We use g_object_set instead of g_object_set_property, because Value doesn't like longs and ulongs for some reason.
295 		g_object_set( gObject, Str.toStringz(propertyName), value, null);
296 	}
297 	
298 	/** */
299 	public void setProperty(string propertyName, ulong value)
300 	{
301 		g_object_set( gObject, Str.toStringz(propertyName), value, null);
302 	}
303 	
304 	public void unref()
305 	{
306 		unref(gObject);
307 	}
308 	
309 	public ObjectG doref()
310 	{
311 		doref(gObject);
312 		
313 		return this;
314 	}
315 	
316 	/**
317 	 */
318 	int[string] connectedSignals;
319 	
320 	void delegate(ParamSpec, ObjectG)[] onNotifyListeners;
321 	/**
322 	 * The notify signal is emitted on an object when one of its
323 	 * properties has been changed. Note that getting this signal
324 	 * doesn't guarantee that the value of the property has actually
325 	 * changed, it may also be emitted when the setter for the property
326 	 * is called to reinstate the previous value.
327 	 * This signal is typically used to obtain change notification for a
328 	 * single property, by specifying the property name as a detail in the
329 	 * $(DDOC_COMMENT example)
330 	 * It is important to note that you must use
331 	 * canonical parameter names as
332 	 * detail strings for the notify signal.
333 	 * See Also
334 	 * GParamSpecObject, g_param_spec_object()
335 	 */
336 	void addOnNotify(void delegate(ParamSpec, ObjectG) dlg, ConnectFlags connectFlags=cast(ConnectFlags)0)
337 	{
338 		if ( !("notify" in connectedSignals) )
339 		{
340 			Signals.connectData(
341 			getStruct(),
342 			"notify",
343 			cast(GCallback)&callBackNotify,
344 			cast(void*)this,
345 			null,
346 			connectFlags);
347 			connectedSignals["notify"] = 1;
348 		}
349 		onNotifyListeners ~= dlg;
350 	}
351 	extern(C) static void callBackNotify(GObject* gobjectStruct, GParamSpec* pspec, ObjectG _objectG)
352 	{
353 		foreach ( void delegate(ParamSpec, ObjectG) dlg ; _objectG.onNotifyListeners )
354 		{
355 			dlg(ObjectG.getDObject!(ParamSpec)(pspec), _objectG);
356 		}
357 	}
358 	
359 	
360 	/**
361 	 * Installs a new property. This is usually done in the class initializer.
362 	 * Note that it is possible to redefine a property in a derived class,
363 	 * by installing a property with the same name. This can be useful at times,
364 	 * e.g. to change the range of allowed values or the default value.
365 	 * Params:
366 	 * oclass = a GObjectClass
367 	 * propertyId = the id for the new property
368 	 * pspec = the GParamSpec for the new property
369 	 */
370 	public static void classInstallProperty(GObjectClass* oclass, uint propertyId, ParamSpec pspec)
371 	{
372 		// void g_object_class_install_property (GObjectClass *oclass,  guint property_id,  GParamSpec *pspec);
373 		g_object_class_install_property(oclass, propertyId, (pspec is null) ? null : pspec.getParamSpecStruct());
374 	}
375 	
376 	/**
377 	 * Installs new properties from an array of GParamSpecs. This is
378 	 * usually done in the class initializer.
379 	 * The property id of each property is the index of each GParamSpec in
380 	 * the pspecs array.
381 	 * The property id of 0 is treated specially by GObject and it should not
382 	 * be used to store a GParamSpec.
383 	 * This function should be used if you plan to use a static array of
384 	 * GParamSpecs and g_object_notify_by_pspec(). For instance, this
385 	 * Since 2.26
386 	 * Params:
387 	 * oclass = a GObjectClass
388 	 * pspecs = the GParamSpecs array
389 	 * defining the new properties. [array length=n_pspecs]
390 	 */
391 	public static void classInstallProperties(GObjectClass* oclass, ParamSpec[] pspecs)
392 	{
393 		// void g_object_class_install_properties (GObjectClass *oclass,  guint n_pspecs,  GParamSpec **pspecs);
394 		
395 		GParamSpec*[] pspecsArray = new GParamSpec*[pspecs.length];
396 		for ( int i = 0; i < pspecs.length ; i++ )
397 		{
398 			pspecsArray[i] = pspecs[i].getParamSpecStruct();
399 		}
400 		
401 		g_object_class_install_properties(oclass, cast(int) pspecs.length, pspecsArray.ptr);
402 	}
403 	
404 	/**
405 	 * Looks up the GParamSpec for a property of a class.
406 	 * Params:
407 	 * oclass = a GObjectClass
408 	 * propertyName = the name of the property to look up
409 	 * Returns: the GParamSpec for the property, or NULL if the class doesn't have a property of that name. [transfer none]
410 	 */
411 	public static ParamSpec classFindProperty(GObjectClass* oclass, string propertyName)
412 	{
413 		// GParamSpec * g_object_class_find_property (GObjectClass *oclass,  const gchar *property_name);
414 		auto p = g_object_class_find_property(oclass, Str.toStringz(propertyName));
415 		
416 		if(p is null)
417 		{
418 			return null;
419 		}
420 		
421 		return ObjectG.getDObject!(ParamSpec)(cast(GParamSpec*) p);
422 	}
423 	
424 	/**
425 	 * Get an array of GParamSpec* for all properties of a class.
426 	 * Params:
427 	 * oclass = a GObjectClass
428 	 * Returns: an array of GParamSpec* which should be freed after use. [array length=n_properties][transfer container]
429 	 */
430 	public static ParamSpec[] classListProperties(GObjectClass* oclass)
431 	{
432 		// GParamSpec ** g_object_class_list_properties (GObjectClass *oclass,  guint *n_properties);
433 		uint nProperties;
434 		auto p = g_object_class_list_properties(oclass, &nProperties);
435 		
436 		if(p is null)
437 		{
438 			return null;
439 		}
440 		
441 		ParamSpec[] arr = new ParamSpec[nProperties];
442 		for(int i = 0; i < nProperties; i++)
443 		{
444 			arr[i] = ObjectG.getDObject!(ParamSpec)(cast(GParamSpec*) p[i]);
445 		}
446 		
447 		return arr;
448 	}
449 	
450 	/**
451 	 * Registers property_id as referring to a property with the
452 	 * name name in a parent class or in an interface implemented
453 	 * by oclass. This allows this class to override
454 	 * a property implementation in a parent class or to provide
455 	 * the implementation of a property from an interface.
456 	 * Note
457 	 * Internally, overriding is implemented by creating a property of type
458 	 * GParamSpecOverride; generally operations that query the properties of
459 	 * the object class, such as g_object_class_find_property() or
460 	 * g_object_class_list_properties() will return the overridden
461 	 * property. However, in one case, the construct_properties argument of
462 	 * the constructor virtual function, the GParamSpecOverride is passed
463 	 * instead, so that the param_id field of the GParamSpec will be
464 	 * correct. For virtually all uses, this makes no difference. If you
465 	 * need to get the overridden property, you can call
466 	 * g_param_spec_get_redirect_target().
467 	 * Since 2.4
468 	 * Params:
469 	 * oclass = a GObjectClass
470 	 * propertyId = the new property ID
471 	 * name = the name of a property registered in a parent class or
472 	 * in an interface of this class.
473 	 */
474 	public static void classOverrideProperty(GObjectClass* oclass, uint propertyId, string name)
475 	{
476 		// void g_object_class_override_property (GObjectClass *oclass,  guint property_id,  const gchar *name);
477 		g_object_class_override_property(oclass, propertyId, Str.toStringz(name));
478 	}
479 	
480 	/**
481 	 * Add a property to an interface; this is only useful for interfaces
482 	 * that are added to GObject-derived types. Adding a property to an
483 	 * interface forces all objects classes with that interface to have a
484 	 * compatible property. The compatible property could be a newly
485 	 * created GParamSpec, but normally
486 	 * g_object_class_override_property() will be used so that the object
487 	 * class only needs to provide an implementation and inherits the
488 	 * property description, default value, bounds, and so forth from the
489 	 * interface property.
490 	 * This function is meant to be called from the interface's default
491 	 * vtable initialization function (the class_init member of
492 	 * GTypeInfo.) It must not be called after after class_init has
493 	 * been called for any object types implementing this interface.
494 	 * Since 2.4
495 	 * Params:
496 	 * iface = any interface vtable for the interface, or the default
497 	 * vtable for the interface.
498 	 * pspec = the GParamSpec for the new property
499 	 */
500 	public static void interfaceInstallProperty(void* iface, ParamSpec pspec)
501 	{
502 		// void g_object_interface_install_property (gpointer g_iface,  GParamSpec *pspec);
503 		g_object_interface_install_property(iface, (pspec is null) ? null : pspec.getParamSpecStruct());
504 	}
505 	
506 	/**
507 	 * Find the GParamSpec with the given name for an
508 	 * interface. Generally, the interface vtable passed in as g_iface
509 	 * will be the default vtable from g_type_default_interface_ref(), or,
510 	 * if you know the interface has already been loaded,
511 	 * g_type_default_interface_peek().
512 	 * Since 2.4
513 	 * Params:
514 	 * iface = any interface vtable for the interface, or the default
515 	 * vtable for the interface
516 	 * propertyName = name of a property to lookup.
517 	 * Returns: the GParamSpec for the property of the interface with the name property_name, or NULL if no such property exists. [transfer none]
518 	 */
519 	public static ParamSpec interfaceFindProperty(void* iface, string propertyName)
520 	{
521 		// GParamSpec * g_object_interface_find_property (gpointer g_iface,  const gchar *property_name);
522 		auto p = g_object_interface_find_property(iface, Str.toStringz(propertyName));
523 		
524 		if(p is null)
525 		{
526 			return null;
527 		}
528 		
529 		return ObjectG.getDObject!(ParamSpec)(cast(GParamSpec*) p);
530 	}
531 	
532 	/**
533 	 * Lists the properties of an interface.Generally, the interface
534 	 * vtable passed in as g_iface will be the default vtable from
535 	 * g_type_default_interface_ref(), or, if you know the interface has
536 	 * already been loaded, g_type_default_interface_peek().
537 	 * Since 2.4
538 	 * Params:
539 	 * iface = any interface vtable for the interface, or the default
540 	 * vtable for the interface
541 	 * Returns: a pointer to an array of pointers to GParamSpec structures. The paramspecs are owned by GLib, but the array should be freed with g_free() when you are done with it. [array length=n_properties_p][transfer container]
542 	 */
543 	public static ParamSpec[] interfaceListProperties(void* iface)
544 	{
545 		// GParamSpec ** g_object_interface_list_properties (gpointer g_iface,  guint *n_properties_p);
546 		uint nPropertiesP;
547 		auto p = g_object_interface_list_properties(iface, &nPropertiesP);
548 		
549 		if(p is null)
550 		{
551 			return null;
552 		}
553 		
554 		ParamSpec[] arr = new ParamSpec[nPropertiesP];
555 		for(int i = 0; i < nPropertiesP; i++)
556 		{
557 			arr[i] = ObjectG.getDObject!(ParamSpec)(cast(GParamSpec*) p[i]);
558 		}
559 		
560 		return arr;
561 	}
562 	
563 	/**
564 	 * Creates a new instance of a GObject subtype and sets its properties.
565 	 * Construction parameters (see G_PARAM_CONSTRUCT, G_PARAM_CONSTRUCT_ONLY)
566 	 * which are not explicitly specified are set to their default values.
567 	 * Rename to: g_object_new
568 	 * Params:
569 	 * objectType = the type id of the GObject subtype to instantiate
570 	 * parameters = an array of GParameter. [array length=n_parameters]
571 	 * Throws: ConstructionException GTK+ fails to create the object.
572 	 */
573 	public this (GType objectType, GParameter[] parameters)
574 	{
575 		// gpointer g_object_newv (GType object_type,  guint n_parameters,  GParameter *parameters);
576 		auto p = g_object_newv(objectType, cast(int) parameters.length, parameters.ptr);
577 		if(p is null)
578 		{
579 			throw new ConstructionException("null returned by g_object_newv(objectType, cast(int) parameters.length, parameters.ptr)");
580 		}
581 		this(cast(GObject*) p);
582 	}
583 	
584 	/**
585 	 * Increases the reference count of object.
586 	 * Params:
587 	 * object = a GObject. [type GObject.Object]
588 	 * Returns: the same object. [type GObject.Object][transfer none]
589 	 */
590 	public static void* doref(void* object)
591 	{
592 		// gpointer g_object_ref (gpointer object);
593 		return g_object_ref(object);
594 	}
595 	
596 	/**
597 	 * Decreases the reference count of object. When its reference count
598 	 * drops to 0, the object is finalized (i.e. its memory is freed).
599 	 * Params:
600 	 * object = a GObject. [type GObject.Object]
601 	 */
602 	public static void unref(void* object)
603 	{
604 		// void g_object_unref (gpointer object);
605 		g_object_unref(object);
606 	}
607 	
608 	/**
609 	 * Increase the reference count of object, and possibly remove the
610 	 * floating reference, if object
611 	 * has a floating reference.
612 	 * In other words, if the object is floating, then this call "assumes
613 	 * ownership" of the floating reference, converting it to a normal
614 	 * reference by clearing the floating flag while leaving the reference
615 	 * count unchanged. If the object is not floating, then this call
616 	 * adds a new normal reference increasing the reference count by one.
617 	 * Since 2.10
618 	 * Params:
619 	 * object = a GObject. [type GObject.Object]
620 	 * Returns: object. [type GObject.Object][transfer none]
621 	 */
622 	public static void* refSink(void* object)
623 	{
624 		// gpointer g_object_ref_sink (gpointer object);
625 		return g_object_ref_sink(object);
626 	}
627 	
628 	/**
629 	 * Clears a reference to a GObject.
630 	 * object_ptr must not be NULL.
631 	 * If the reference is NULL then this function does nothing.
632 	 * Otherwise, the reference count of the object is decreased and the
633 	 * pointer is set to NULL.
634 	 * This function is threadsafe and modifies the pointer atomically,
635 	 * using memory barriers where needed.
636 	 * A macro is also included that allows this function to be used without
637 	 * pointer casts.
638 	 * Since 2.28
639 	 * Params:
640 	 * objectPtr = a pointer to a GObject reference
641 	 */
642 	public static void clearObject(ref ObjectG objectPtr)
643 	{
644 		// void g_clear_object (volatile GObject **object_ptr);
645 		GObject* outobjectPtr = (objectPtr is null) ? null : objectPtr.getObjectGStruct();
646 		
647 		g_clear_object(&outobjectPtr);
648 		
649 		objectPtr = ObjectG.getDObject!(ObjectG)(outobjectPtr);
650 	}
651 	
652 	/**
653 	 * Checks whether object has a floating
654 	 * reference.
655 	 * Since 2.10
656 	 * Params:
657 	 * object = a GObject. [type GObject.Object]
658 	 * Returns: TRUE if object has a floating reference
659 	 */
660 	public static int isFloating(void* object)
661 	{
662 		// gboolean g_object_is_floating (gpointer object);
663 		return g_object_is_floating(object);
664 	}
665 	
666 	/**
667 	 * This function is intended for GObject implementations to re-enforce a
668 	 * floating object reference.
669 	 * Doing this is seldomly required: all
670 	 * GInitiallyUnowneds are created with a floating reference which
671 	 * usually just needs to be sunken by calling g_object_ref_sink().
672 	 * Since 2.10
673 	 */
674 	public void forceFloating()
675 	{
676 		// void g_object_force_floating (GObject *object);
677 		g_object_force_floating(gObject);
678 	}
679 	
680 	/**
681 	 * Adds a weak reference callback to an object. Weak references are
682 	 * used for notification when an object is finalized. They are called
683 	 * "weak references" because they allow you to safely hold a pointer
684 	 * to an object without calling g_object_ref() (g_object_ref() adds a
685 	 * strong reference, that is, forces the object to stay alive).
686 	 * Params:
687 	 * notify = callback to invoke before the object is freed
688 	 * data = extra data to pass to notify
689 	 */
690 	public void weakRef(GWeakNotify notify, void* data)
691 	{
692 		// void g_object_weak_ref (GObject *object,  GWeakNotify notify,  gpointer data);
693 		g_object_weak_ref(gObject, notify, data);
694 	}
695 	
696 	/**
697 	 * Removes a weak reference callback to an object.
698 	 * Params:
699 	 * notify = callback to search for
700 	 * data = data to search for
701 	 */
702 	public void weakUnref(GWeakNotify notify, void* data)
703 	{
704 		// void g_object_weak_unref (GObject *object,  GWeakNotify notify,  gpointer data);
705 		g_object_weak_unref(gObject, notify, data);
706 	}
707 	
708 	/**
709 	 * Adds a weak reference from weak_pointer to object to indicate that
710 	 * the pointer located at weak_pointer_location is only valid during
711 	 * the lifetime of object. When the object is finalized,
712 	 * weak_pointer will be set to NULL.
713 	 * Params:
714 	 * weakPointerLocation = The memory address of a pointer. [inout]
715 	 */
716 	public void addWeakPointer(void** weakPointerLocation)
717 	{
718 		// void g_object_add_weak_pointer (GObject *object,  gpointer *weak_pointer_location);
719 		g_object_add_weak_pointer(gObject, weakPointerLocation);
720 	}
721 	
722 	/**
723 	 * Removes a weak reference from object that was previously added
724 	 * using g_object_add_weak_pointer(). The weak_pointer_location has
725 	 * to match the one used with g_object_add_weak_pointer().
726 	 * Params:
727 	 * weakPointerLocation = The memory address of a pointer. [inout]
728 	 */
729 	public void removeWeakPointer(void** weakPointerLocation)
730 	{
731 		// void g_object_remove_weak_pointer (GObject *object,  gpointer *weak_pointer_location);
732 		g_object_remove_weak_pointer(gObject, weakPointerLocation);
733 	}
734 	
735 	/**
736 	 * Increases the reference count of the object by one and sets a
737 	 * callback to be called when all other references to the object are
738 	 * dropped, or when this is already the last reference to the object
739 	 * and another reference is established.
740 	 * This functionality is intended for binding object to a proxy
741 	 * object managed by another memory manager. This is done with two
742 	 * paired references: the strong reference added by
743 	 * g_object_add_toggle_ref() and a reverse reference to the proxy
744 	 * object which is either a strong reference or weak reference.
745 	 * The setup is that when there are no other references to object,
746 	 * only a weak reference is held in the reverse direction from object
747 	 * to the proxy object, but when there are other references held to
748 	 * object, a strong reference is held. The notify callback is called
749 	 * when the reference from object to the proxy object should be
750 	 * toggled from strong to weak (is_last_ref
751 	 * true) or weak to strong (is_last_ref false).
752 	 * Since a (normal) reference must be held to the object before
753 	 * calling g_object_toggle_ref(), the initial state of the reverse
754 	 * link is always strong.
755 	 * Multiple toggle references may be added to the same gobject,
756 	 * however if there are multiple toggle references to an object, none
757 	 * of them will ever be notified until all but one are removed. For
758 	 * this reason, you should only ever use a toggle reference if there
759 	 * is important state in the proxy object.
760 	 * Since 2.8
761 	 * Params:
762 	 * notify = a function to call when this reference is the
763 	 * last reference to the object, or is no longer
764 	 * the last reference.
765 	 * data = data to pass to notify
766 	 */
767 	public void addToggleRef(GToggleNotify notify, void* data)
768 	{
769 		// void g_object_add_toggle_ref (GObject *object,  GToggleNotify notify,  gpointer data);
770 		g_object_add_toggle_ref(gObject, notify, data);
771 	}
772 	
773 	/**
774 	 * Removes a reference added with g_object_add_toggle_ref(). The
775 	 * reference count of the object is decreased by one.
776 	 * Since 2.8
777 	 * Params:
778 	 * notify = a function to call when this reference is the
779 	 * last reference to the object, or is no longer
780 	 * the last reference.
781 	 * data = data to pass to notify
782 	 */
783 	public void removeToggleRef(GToggleNotify notify, void* data)
784 	{
785 		// void g_object_remove_toggle_ref (GObject *object,  GToggleNotify notify,  gpointer data);
786 		g_object_remove_toggle_ref(gObject, notify, data);
787 	}
788 	
789 	/**
790 	 * Emits a "notify" signal for the property property_name on object.
791 	 * When possible, eg. when signaling a property change from within the class
792 	 * that registered the property, you should use g_object_notify_by_pspec()
793 	 * instead.
794 	 * Params:
795 	 * propertyName = the name of a property installed on the class of object.
796 	 */
797 	public void notify(string propertyName)
798 	{
799 		// void g_object_notify (GObject *object,  const gchar *property_name);
800 		g_object_notify(gObject, Str.toStringz(propertyName));
801 	}
802 	
803 	/**
804 	 * Emits a "notify" signal for the property specified by pspec on object.
805 	 * This function omits the property name lookup, hence it is faster than
806 	 * g_object_notify().
807 	 * One way to avoid using g_object_notify() from within the
808 	 * class that registered the properties, and using g_object_notify_by_pspec()
809 	 * instead, is to store the GParamSpec used with
810 	 * Since 2.26
811 	 * Params:
812 	 * pspec = the GParamSpec of a property installed on the class of object.
813 	 */
814 	public void notifyByPspec(ParamSpec pspec)
815 	{
816 		// void g_object_notify_by_pspec (GObject *object,  GParamSpec *pspec);
817 		g_object_notify_by_pspec(gObject, (pspec is null) ? null : pspec.getParamSpecStruct());
818 	}
819 	
820 	/**
821 	 * Increases the freeze count on object. If the freeze count is
822 	 * non-zero, the emission of "notify" signals on object is
823 	 * stopped. The signals are queued until the freeze count is decreased
824 	 * to zero.
825 	 * This is necessary for accessors that modify multiple properties to prevent
826 	 * premature notification while the object is still being modified.
827 	 */
828 	public void freezeNotify()
829 	{
830 		// void g_object_freeze_notify (GObject *object);
831 		g_object_freeze_notify(gObject);
832 	}
833 	
834 	/**
835 	 * Reverts the effect of a previous call to
836 	 * g_object_freeze_notify(). The freeze count is decreased on object
837 	 * and when it reaches zero, all queued "notify" signals are emitted.
838 	 * It is an error to call this function when the freeze count is zero.
839 	 */
840 	public void thawNotify()
841 	{
842 		// void g_object_thaw_notify (GObject *object);
843 		g_object_thaw_notify(gObject);
844 	}
845 	
846 	/**
847 	 * Gets a named field from the objects table of associations (see g_object_set_data()).
848 	 * Params:
849 	 * key = name of the key for that association
850 	 * Returns: the data if found, or NULL if no such data exists. [transfer none]
851 	 */
852 	public void* getData(string key)
853 	{
854 		// gpointer g_object_get_data (GObject *object,  const gchar *key);
855 		return g_object_get_data(gObject, Str.toStringz(key));
856 	}
857 	
858 	/**
859 	 * Each object carries around a table of associations from
860 	 * strings to pointers. This function lets you set an association.
861 	 * If the object already had an association with that name,
862 	 * the old association will be destroyed.
863 	 * Params:
864 	 * key = name of the key
865 	 * data = data to associate with that key
866 	 */
867 	public void setData(string key, void* data)
868 	{
869 		// void g_object_set_data (GObject *object,  const gchar *key,  gpointer data);
870 		g_object_set_data(gObject, Str.toStringz(key), data);
871 	}
872 	
873 	/**
874 	 * Like g_object_set_data() except it adds notification
875 	 * for when the association is destroyed, either by setting it
876 	 * to a different value or when the object is destroyed.
877 	 * Note that the destroy callback is not called if data is NULL.
878 	 * Params:
879 	 * key = name of the key
880 	 * data = data to associate with that key
881 	 * destroy = function to call when the association is destroyed
882 	 */
883 	public void setDataFull(string key, void* data, GDestroyNotify destroy)
884 	{
885 		// void g_object_set_data_full (GObject *object,  const gchar *key,  gpointer data,  GDestroyNotify destroy);
886 		g_object_set_data_full(gObject, Str.toStringz(key), data, destroy);
887 	}
888 	
889 	/**
890 	 * Remove a specified datum from the object's data associations,
891 	 * without invoking the association's destroy handler.
892 	 * Params:
893 	 * key = name of the key
894 	 * Returns: the data if found, or NULL if no such data exists. [transfer full]
895 	 */
896 	public void* stealData(string key)
897 	{
898 		// gpointer g_object_steal_data (GObject *object,  const gchar *key);
899 		return g_object_steal_data(gObject, Str.toStringz(key));
900 	}
901 	
902 	/**
903 	 * This function gets back user data pointers stored via
904 	 * g_object_set_qdata().
905 	 * Params:
906 	 * quark = A GQuark, naming the user data pointer
907 	 * Returns: The user data pointer set, or NULL. [transfer none]
908 	 */
909 	public void* getQdata(GQuark quark)
910 	{
911 		// gpointer g_object_get_qdata (GObject *object,  GQuark quark);
912 		return g_object_get_qdata(gObject, quark);
913 	}
914 	
915 	/**
916 	 * This sets an opaque, named pointer on an object.
917 	 * The name is specified through a GQuark (retrived e.g. via
918 	 * g_quark_from_static_string()), and the pointer
919 	 * can be gotten back from the object with g_object_get_qdata()
920 	 * until the object is finalized.
921 	 * Setting a previously set user data pointer, overrides (frees)
922 	 * the old pointer set, using NULL as pointer essentially
923 	 * removes the data stored.
924 	 * Params:
925 	 * quark = A GQuark, naming the user data pointer
926 	 * data = An opaque user data pointer
927 	 */
928 	public void setQdata(GQuark quark, void* data)
929 	{
930 		// void g_object_set_qdata (GObject *object,  GQuark quark,  gpointer data);
931 		g_object_set_qdata(gObject, quark, data);
932 	}
933 	
934 	/**
935 	 * This function works like g_object_set_qdata(), but in addition,
936 	 * a void (*destroy) (gpointer) function may be specified which is
937 	 * called with data as argument when the object is finalized, or
938 	 * the data is being overwritten by a call to g_object_set_qdata()
939 	 * with the same quark.
940 	 * Params:
941 	 * quark = A GQuark, naming the user data pointer
942 	 * data = An opaque user data pointer
943 	 * destroy = Function to invoke with data as argument, when data
944 	 * needs to be freed
945 	 */
946 	public void setQdataFull(GQuark quark, void* data, GDestroyNotify destroy)
947 	{
948 		// void g_object_set_qdata_full (GObject *object,  GQuark quark,  gpointer data,  GDestroyNotify destroy);
949 		g_object_set_qdata_full(gObject, quark, data, destroy);
950 	}
951 	
952 	/**
953 	 * This function gets back user data pointers stored via
954 	 * g_object_set_qdata() and removes the data from object
955 	 * without invoking its destroy() function (if any was
956 	 * set).
957 	 * Usually, calling this function is only required to update
958 	 * Params:
959 	 * quark = A GQuark, naming the user data pointer
960 	 * Returns: The user data pointer set, or NULL. [transfer full]
961 	 */
962 	public void* stealQdata(GQuark quark)
963 	{
964 		// gpointer g_object_steal_qdata (GObject *object,  GQuark quark);
965 		return g_object_steal_qdata(gObject, quark);
966 	}
967 	
968 	/**
969 	 * Sets a property on an object.
970 	 * Params:
971 	 * propertyName = the name of the property to set
972 	 * value = the value
973 	 */
974 	public void setProperty(string propertyName, Value value)
975 	{
976 		// void g_object_set_property (GObject *object,  const gchar *property_name,  const GValue *value);
977 		g_object_set_property(gObject, Str.toStringz(propertyName), (value is null) ? null : value.getValueStruct());
978 	}
979 	
980 	/**
981 	 * Gets a property of an object. value must have been initialized to the
982 	 * expected type of the property (or a type to which the expected type can be
983 	 * transformed) using g_value_init().
984 	 * In general, a copy is made of the property contents and the caller is
985 	 * responsible for freeing the memory by calling g_value_unset().
986 	 * Note that g_object_get_property() is really intended for language
987 	 * bindings, g_object_get() is much more convenient for C programming.
988 	 * Params:
989 	 * propertyName = the name of the property to get
990 	 * value = return location for the property value
991 	 */
992 	public void getProperty(string propertyName, Value value)
993 	{
994 		// void g_object_get_property (GObject *object,  const gchar *property_name,  GValue *value);
995 		g_object_get_property(gObject, Str.toStringz(propertyName), (value is null) ? null : value.getValueStruct());
996 	}
997 	
998 	/**
999 	 * Creates a new instance of a GObject subtype and sets its properties.
1000 	 * Construction parameters (see G_PARAM_CONSTRUCT, G_PARAM_CONSTRUCT_ONLY)
1001 	 * which are not explicitly specified are set to their default values.
1002 	 * Params:
1003 	 * objectType = the type id of the GObject subtype to instantiate
1004 	 * firstPropertyName = the name of the first property
1005 	 * varArgs = the value of the first property, followed optionally by more
1006 	 * name/value pairs, followed by NULL
1007 	 * Throws: ConstructionException GTK+ fails to create the object.
1008 	 */
1009 	public this (GType objectType, string firstPropertyName, void* varArgs)
1010 	{
1011 		// GObject * g_object_new_valist (GType object_type,  const gchar *first_property_name,  va_list var_args);
1012 		auto p = g_object_new_valist(objectType, Str.toStringz(firstPropertyName), varArgs);
1013 		if(p is null)
1014 		{
1015 			throw new ConstructionException("null returned by g_object_new_valist(objectType, Str.toStringz(firstPropertyName), varArgs)");
1016 		}
1017 		this(cast(GObject*) p);
1018 	}
1019 	
1020 	/**
1021 	 * Sets properties on an object.
1022 	 * Params:
1023 	 * firstPropertyName = name of the first property to set
1024 	 * varArgs = value for the first property, followed optionally by more
1025 	 * name/value pairs, followed by NULL
1026 	 */
1027 	public void setValist(string firstPropertyName, void* varArgs)
1028 	{
1029 		// void g_object_set_valist (GObject *object,  const gchar *first_property_name,  va_list var_args);
1030 		g_object_set_valist(gObject, Str.toStringz(firstPropertyName), varArgs);
1031 	}
1032 	
1033 	/**
1034 	 * Gets properties of an object.
1035 	 * In general, a copy is made of the property contents and the caller
1036 	 * is responsible for freeing the memory in the appropriate manner for
1037 	 * the type, for instance by calling g_free() or g_object_unref().
1038 	 * See g_object_get().
1039 	 * Params:
1040 	 * firstPropertyName = name of the first property to get
1041 	 * varArgs = return location for the first property, followed optionally by more
1042 	 * name/return location pairs, followed by NULL
1043 	 */
1044 	public void getValist(string firstPropertyName, void* varArgs)
1045 	{
1046 		// void g_object_get_valist (GObject *object,  const gchar *first_property_name,  va_list var_args);
1047 		g_object_get_valist(gObject, Str.toStringz(firstPropertyName), varArgs);
1048 	}
1049 	
1050 	/**
1051 	 * This function essentially limits the life time of the closure to
1052 	 * the life time of the object. That is, when the object is finalized,
1053 	 * the closure is invalidated by calling g_closure_invalidate() on
1054 	 * it, in order to prevent invocations of the closure with a finalized
1055 	 * (nonexisting) object. Also, g_object_ref() and g_object_unref() are
1056 	 * added as marshal guards to the closure, to ensure that an extra
1057 	 * reference count is held on object during invocation of the
1058 	 * closure. Usually, this function will be called on closures that
1059 	 * use this object as closure data.
1060 	 * Params:
1061 	 * closure = GClosure to watch
1062 	 */
1063 	public void watchClosure(Closure closure)
1064 	{
1065 		// void g_object_watch_closure (GObject *object,  GClosure *closure);
1066 		g_object_watch_closure(gObject, (closure is null) ? null : closure.getClosureStruct());
1067 	}
1068 	
1069 	/**
1070 	 * Releases all references to other objects. This can be used to break
1071 	 * reference cycles.
1072 	 * This functions should only be called from object system implementations.
1073 	 */
1074 	public void runDispose()
1075 	{
1076 		// void g_object_run_dispose (GObject *object);
1077 		g_object_run_dispose(gObject);
1078 	}
1079 }