1 /*
2  * This file is part of gtkD.
3  *
4  * gtkD is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU Lesser General Public License
6  * as published by the Free Software Foundation; either version 3
7  * of the License, or (at your option) any later version, with
8  * some exceptions, please read the COPYING file.
9  *
10  * gtkD is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU Lesser General Public License for more details.
14  *
15  * You should have received a copy of the GNU Lesser General Public License
16  * along with gtkD; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110, USA
18  */
19 
20 // generated automatically - do not change
21 // find conversion definition on APILookup.txt
22 // implement new conversion functionalities on the wrap.utils pakage
23 
24 
25 module gobject.ObjectG;
26 
27 private import core.memory;
28 private import glib.ConstructionException;
29 private import glib.Str;
30 private import gobject.Binding;
31 private import gobject.Closure;
32 private import gobject.ObjectG;
33 private import gobject.ParamSpec;
34 private import gobject.Signals;
35 private import gobject.TypeInterface;
36 private import gobject.Value;
37 private import gobject.c.functions;
38 public  import gobject.c.types;
39 public  import gtkc.gobjecttypes;
40 private import gtkd.Loader;
41 private import std.algorithm;
42 private import std.traits;
43 
44 
45 /**
46  * All the fields in the GObject structure are private
47  * to the #GObject implementation and should never be accessed directly.
48  */
49 public class ObjectG
50 {
51 	/** the main Gtk struct */
52 	protected GObject* gObject;
53 	protected bool ownedRef;
54 
55 	/** Get the main Gtk struct */
56 	public GObject* getObjectGStruct(bool transferOwnership = false)
57 	{
58 		if (transferOwnership)
59 			ownedRef = false;
60 		return gObject;
61 	}
62 
63 	/** the main Gtk struct as a void* */
64 	protected void* getStruct()
65 	{
66 		return cast(void*)gObject;
67 	}
68 
69 	protected bool isGcRoot;
70 
71 	/**
72 	 * Sets our main struct and passes store it on the gobject.
73 	 * Add a gabage collector root to the gtk+ struct so it doesn't get collect
74 	 */
75 	public this (GObject* gObject, bool ownedRef = false)
76 	{
77 		this.gObject = gObject;
78 		if ( gObject !is  null )
79 		{
80 			setDataFull("GObject", cast(void*)this, cast(GDestroyNotify)&destroyNotify);
81 			addToggleRef(cast(GToggleNotify)&toggleNotify, cast(void*)this);
82 
83 			//If the refCount is larger then 1 toggleNotify isn't called
84 			if (gObject.refCount > 1 && !isGcRoot)
85 			{
86 				GC.addRoot(cast(void*)this);
87 				isGcRoot = true;
88 			}
89 
90 			//Remove the floating reference if there is one.
91 			if ( isFloating() )
92 			{
93 				refSink();
94 				unref();
95 			}
96 			//If we already owned this reference remove the one added by addToggleRef.
97 			else if ( ownedRef )
98 			{
99 				unref();
100 			}
101 		}
102 	}
103 
104 	extern(C)
105 	{
106 		static void destroyNotify(ObjectG obj)
107 		{
108 			if ( obj.isGcRoot )
109 			{
110 				GC.removeRoot(cast(void*)obj);
111 				obj.isGcRoot = false;
112 			}
113 
114 			if ( obj.gObject.refCount > 0 )
115 				obj.removeToggleRef(cast(GToggleNotify)&toggleNotify, cast(void*)obj);
116 
117 			obj.gObject = null;
118 		}
119 
120 		static void toggleNotify(ObjectG obj, GObject* object, int isLastRef)
121 		{
122 			if ( isLastRef && obj.isGcRoot )
123 			{
124 				GC.removeRoot(cast(void*)obj);
125 				obj.isGcRoot = false;
126 			}
127 			else if ( !obj.isGcRoot )
128 			{
129 				GC.addRoot(cast(void*)obj);
130 				obj.isGcRoot = true;
131 			}
132 		}
133 	}
134 
135 	~this()
136 	{
137 		static if ( isPointer!(typeof(g_object_steal_data)) )
138 			bool libLoaded = Linker.isLoaded(LIBRARY_GOBJECT);
139 		else
140 			enum libLoaded = true;
141 
142 		if ( libLoaded && gObject !is null )
143 		{
144 			// Remove the GDestroyNotify callback,
145 			// for when the D object is destroyed before the C one.
146 			g_object_steal_data(gObject, cast(char*)"GObject");
147 
148 			if ( isGcRoot )
149 			{
150 				GC.removeRoot(cast(void*)this);
151 				isGcRoot = false;
152 			}
153 
154 			g_object_remove_toggle_ref(gObject, cast(GToggleNotify)&toggleNotify, cast(void*)this);
155 		}
156 	}
157 
158 	/** */
159 	T opCast(T)()
160 	{
161 		if ( !this )
162 			return null;
163 
164 		static if ( is(T : ObjectG)
165 			&& !is(T == interface)
166 			&& is(typeof(new T(cast(typeof(T.tupleof[0]))gObject, false))) )
167 		{
168 			//If a regular cast works, return the result.
169 			if ( auto r = cast(T)super )
170 				return r;
171 
172 			//Prints a warning if the cast is invalid.
173 			//g_type_check_instance_cast(cast(GTypeInstance*)gObject, T.getType());
174 
175 			//Can we cast this type to T.
176 			if ( !g_type_is_a(gObject.gTypeInstance.gClass.gType, T.getType()) )
177 				return null;
178 
179 			//Remove the GDestroyNotify callback for the original d object.
180 			g_object_steal_data(gObject, "GObject");
181 			//Remove the original object as a GC root if needed.
182 			if ( isGcRoot )
183 			{
184 				GC.removeRoot(cast(void*)this);
185 				isGcRoot = false;
186 			}
187 			//Add a reference for the original D object before we remove the toggle reference.
188 			g_object_ref(gObject);
189 			g_object_remove_toggle_ref(gObject, cast(GToggleNotify)&toggleNotify, cast(void*)this);
190 
191 			//The new object handles the memory management.
192 			return new T(cast(typeof(T.tupleof[0]))gObject, false);
193 		}
194 		else static if ( is(T == interface)
195 			&& hasStaticMember!(T, "getType")
196 			&& is(ReturnType!(T.getType) == GType) )
197 		{
198 			//If a regular cast works, return the result.
199 			if ( auto r = cast(T)super )
200 				return r;
201 
202 			//Do we implement interface T.
203 			if ( !g_type_is_a(gObject.gTypeInstance.gClass.gType, T.getType()) )
204 				return null;
205 
206 			return getInterfaceInstance!T(gObject);
207 		}
208 		else
209 			return cast(T)super;
210 	}
211 
212 	unittest
213 	{
214 		ObjectG obj = null;
215 
216 		assert( (cast(Binding)obj) is null );
217 	}
218 
219 	/**
220 	 * Gets a D Object from the objects table of associations.
221 	 * Params:
222 	 *  obj = GObject containing the associations.
223 	 * Returns: the D Object if found, or a newly constructed object if no such Object exists.
224 	 */
225 	public static RT getDObject(T, RT=T, U)(U obj, bool ownedRef = false)
226 	{
227 		if ( obj is null )
228 		{
229 			return null;
230 		}
231 
232 		static if ( is(T : ObjectG) && !is(RT == interface) )
233 		{
234 			auto p = g_object_get_data(cast(GObject*)obj, Str.toStringz("GObject"));
235 
236 			if ( p !is null )
237 				return cast(RT)cast(ObjectG)p;
238 			else
239 				return new T(obj, ownedRef);
240 		}
241 		else static if ( is(RT == interface) && hasMember!(RT, "getType") && is(ReturnType!(RT.getType) == GType) )
242 		{
243 			auto p = g_object_get_data(cast(GObject*)obj, Str.toStringz("GObject"));
244 
245 			if ( p !is null )
246 				return cast(RT)cast(ObjectG)p;
247 			else
248 				return getInterfaceInstance!RT(cast(GObject*)obj);
249 		}
250 		else
251 		{
252 			return new T(obj, ownedRef);
253 		}
254 	}
255 
256 	private static I getInterfaceInstance(I)(GObject* instance)
257 	{
258 		static class Impl: ObjectG, I
259 		{
260 			public this (GObject* gObject, bool ownedRef = false)
261 			{
262 				super(gObject, ownedRef);
263 			}
264 
265 			/** the main Gtk struct as a void* */
266 			protected override void* getStruct()
267 			{
268 				return cast(void*)gObject;
269 			}
270 
271 			// add the interface capabilities
272 			mixin("import "~ moduleName!I[0..$-2] ~"T;import "~ moduleName!I ~"; mixin "~ __traits(identifier, I)[0..$-2] ~"T!("~__traits(identifier, Impl)~");");
273 		}
274 
275 		ClassInfo ci = Impl.classinfo;
276 		Impl iface;
277 		void* p;
278 
279 		//Skip all the setup for the memory management,
280 		//and only add an extra reference for the instance returned.
281 		p = GC.malloc(ci.initializer.length, GC.BlkAttr.FINALIZE, ci);
282 		p[0..ci.initializer.length] = ci.initializer;
283 		iface = cast(Impl)p;
284 		iface.gObject = instance;
285 		iface.addToggleRef(cast(GToggleNotify)&toggleNotify, cast(void*)iface);
286 
287 		return iface;
288 	}
289 
290 	/** */
291 	public void setProperty(T)(string propertyName, T value)
292 	{
293 		setProperty(propertyName, new Value(value));
294 	}
295 
296 	deprecated("Use the member function")
297 	public static void unref(ObjectG obj)
298 	{
299 		obj.unref();
300 	}
301 
302 	deprecated("Use the member function")
303 	public static ObjectG doref(ObjectG obj)
304 	{
305 		return obj.doref();
306 	}
307 
308 	/**
309 	 * The notify signal is emitted on an object when one of its
310 	 * properties has been changed. Note that getting this signal
311 	 * doesn't guarantee that the value of the property has actually
312 	 * changed, it may also be emitted when the setter for the property
313 	 * is called to reinstate the previous value.
314 	 *
315 	 * This signal is typically used to obtain change notification for a
316 	 * single property.
317 	 *
318 	 * It is important to note that you must use
319 	 * canonical parameter names for the property.
320 	 *
321 	 * Params:
322 	 *     dlg          = The callback.
323 	 *     property     = Set this if you only want to receive the signal for a specific property.
324 	 *     connectFlags = The behavior of the signal's connection.
325 	 */
326 	gulong addOnNotify(void delegate(ParamSpec, ObjectG) dlg, string property = "", ConnectFlags connectFlags=cast(ConnectFlags)0)
327 	{
328 		string signalName;
329 
330 		if ( property == "" )
331 			signalName = "notify";
332 		else
333 			signalName = "notify::"~ property;
334 
335 		return Signals.connect(this, signalName, dlg, connectFlags ^ ConnectFlags.SWAPPED);
336 	}
337 
338 	/**
339 	 */
340 
341 	/** */
342 	public static GType getType()
343 	{
344 		return g_initially_unowned_get_type();
345 	}
346 
347 	/**
348 	 * Creates a new instance of a #GObject subtype and sets its properties.
349 	 *
350 	 * Construction parameters (see #G_PARAM_CONSTRUCT, #G_PARAM_CONSTRUCT_ONLY)
351 	 * which are not explicitly specified are set to their default values.
352 	 *
353 	 * Params:
354 	 *     objectType = the type id of the #GObject subtype to instantiate
355 	 *     firstPropertyName = the name of the first property
356 	 *     varArgs = the value of the first property, followed optionally by more
357 	 *         name/value pairs, followed by %NULL
358 	 *
359 	 * Returns: a new instance of @object_type
360 	 *
361 	 * Throws: ConstructionException GTK+ fails to create the object.
362 	 */
363 	public this(GType objectType, string firstPropertyName, void* varArgs)
364 	{
365 		auto p = g_object_new_valist(objectType, Str.toStringz(firstPropertyName), varArgs);
366 
367 		if(p is null)
368 		{
369 			throw new ConstructionException("null returned by new_valist");
370 		}
371 
372 		this(cast(GObject*) p, true);
373 	}
374 
375 	/**
376 	 * Creates a new instance of a #GObject subtype and sets its properties using
377 	 * the provided arrays. Both arrays must have exactly @n_properties elements,
378 	 * and the names and values correspond by index.
379 	 *
380 	 * Construction parameters (see %G_PARAM_CONSTRUCT, %G_PARAM_CONSTRUCT_ONLY)
381 	 * which are not explicitly specified are set to their default values.
382 	 *
383 	 * Params:
384 	 *     objectType = the object type to instantiate
385 	 *     names = the names of each property to be set
386 	 *     values = the values of each property to be set
387 	 *
388 	 * Returns: a new instance of
389 	 *     @object_type
390 	 *
391 	 * Since: 2.54
392 	 *
393 	 * Throws: ConstructionException GTK+ fails to create the object.
394 	 */
395 	public this(GType objectType, string[] names, Value[] values)
396 	{
397 		GValue[] valuesArray = new GValue[values.length];
398 		for ( int i = 0; i < values.length; i++ )
399 		{
400 			valuesArray[i] = *(values[i].getValueStruct());
401 		}
402 
403 		auto p = g_object_new_with_properties(objectType, cast(uint)values.length, Str.toStringzArray(names), valuesArray.ptr);
404 
405 		if(p is null)
406 		{
407 			throw new ConstructionException("null returned by new_with_properties");
408 		}
409 
410 		this(cast(GObject*) p, true);
411 	}
412 
413 	/**
414 	 * Creates a new instance of a #GObject subtype and sets its properties.
415 	 *
416 	 * Construction parameters (see #G_PARAM_CONSTRUCT, #G_PARAM_CONSTRUCT_ONLY)
417 	 * which are not explicitly specified are set to their default values.
418 	 *
419 	 * Deprecated: Use g_object_new_with_properties() instead.
420 	 * deprecated. See #GParameter for more information.
421 	 *
422 	 * Params:
423 	 *     objectType = the type id of the #GObject subtype to instantiate
424 	 *     parameters = an array of #GParameter
425 	 *
426 	 * Returns: a new instance of
427 	 *     @object_type
428 	 *
429 	 * Throws: ConstructionException GTK+ fails to create the object.
430 	 */
431 	public this(GType objectType, GParameter[] parameters)
432 	{
433 		auto p = g_object_newv(objectType, cast(uint)parameters.length, parameters.ptr);
434 
435 		if(p is null)
436 		{
437 			throw new ConstructionException("null returned by newv");
438 		}
439 
440 		this(cast(GObject*) p, true);
441 	}
442 
443 	/** */
444 	public static size_t compatControl(size_t what, void* data)
445 	{
446 		return g_object_compat_control(what, data);
447 	}
448 
449 	/**
450 	 * Find the #GParamSpec with the given name for an
451 	 * interface. Generally, the interface vtable passed in as @g_iface
452 	 * will be the default vtable from g_type_default_interface_ref(), or,
453 	 * if you know the interface has already been loaded,
454 	 * g_type_default_interface_peek().
455 	 *
456 	 * Params:
457 	 *     gIface = any interface vtable for the
458 	 *         interface, or the default vtable for the interface
459 	 *     propertyName = name of a property to lookup.
460 	 *
461 	 * Returns: the #GParamSpec for the property of the
462 	 *     interface with the name @property_name, or %NULL if no
463 	 *     such property exists.
464 	 *
465 	 * Since: 2.4
466 	 */
467 	public static ParamSpec interfaceFindProperty(TypeInterface gIface, string propertyName)
468 	{
469 		auto p = g_object_interface_find_property((gIface is null) ? null : gIface.getTypeInterfaceStruct(), Str.toStringz(propertyName));
470 
471 		if(p is null)
472 		{
473 			return null;
474 		}
475 
476 		return ObjectG.getDObject!(ParamSpec)(cast(GParamSpec*) p);
477 	}
478 
479 	/**
480 	 * Add a property to an interface; this is only useful for interfaces
481 	 * that are added to GObject-derived types. Adding a property to an
482 	 * interface forces all objects classes with that interface to have a
483 	 * compatible property. The compatible property could be a newly
484 	 * created #GParamSpec, but normally
485 	 * g_object_class_override_property() will be used so that the object
486 	 * class only needs to provide an implementation and inherits the
487 	 * property description, default value, bounds, and so forth from the
488 	 * interface property.
489 	 *
490 	 * This function is meant to be called from the interface's default
491 	 * vtable initialization function (the @class_init member of
492 	 * #GTypeInfo.) It must not be called after after @class_init has
493 	 * been called for any object types implementing this interface.
494 	 *
495 	 * If @pspec is a floating reference, it will be consumed.
496 	 *
497 	 * Params:
498 	 *     gIface = any interface vtable for the
499 	 *         interface, or the default
500 	 *         vtable for the interface.
501 	 *     pspec = the #GParamSpec for the new property
502 	 *
503 	 * Since: 2.4
504 	 */
505 	public static void interfaceInstallProperty(TypeInterface gIface, ParamSpec pspec)
506 	{
507 		g_object_interface_install_property((gIface is null) ? null : gIface.getTypeInterfaceStruct(), (pspec is null) ? null : pspec.getParamSpecStruct());
508 	}
509 
510 	/**
511 	 * Lists the properties of an interface.Generally, the interface
512 	 * vtable passed in as @g_iface will be the default vtable from
513 	 * g_type_default_interface_ref(), or, if you know the interface has
514 	 * already been loaded, g_type_default_interface_peek().
515 	 *
516 	 * Params:
517 	 *     gIface = any interface vtable for the
518 	 *         interface, or the default vtable for the interface
519 	 *
520 	 * Returns: a
521 	 *     pointer to an array of pointers to #GParamSpec
522 	 *     structures. The paramspecs are owned by GLib, but the
523 	 *     array should be freed with g_free() when you are done with
524 	 *     it.
525 	 *
526 	 * Since: 2.4
527 	 */
528 	public static ParamSpec[] interfaceListProperties(TypeInterface gIface)
529 	{
530 		uint nPropertiesP;
531 
532 		auto p = g_object_interface_list_properties((gIface is null) ? null : gIface.getTypeInterfaceStruct(), &nPropertiesP);
533 
534 		if(p is null)
535 		{
536 			return null;
537 		}
538 
539 		ParamSpec[] arr = new ParamSpec[nPropertiesP];
540 		for(int i = 0; i < nPropertiesP; i++)
541 		{
542 			arr[i] = ObjectG.getDObject!(ParamSpec)(cast(GParamSpec*) p[i]);
543 		}
544 
545 		return arr;
546 	}
547 
548 	/**
549 	 * Increases the reference count of the object by one and sets a
550 	 * callback to be called when all other references to the object are
551 	 * dropped, or when this is already the last reference to the object
552 	 * and another reference is established.
553 	 *
554 	 * This functionality is intended for binding @object to a proxy
555 	 * object managed by another memory manager. This is done with two
556 	 * paired references: the strong reference added by
557 	 * g_object_add_toggle_ref() and a reverse reference to the proxy
558 	 * object which is either a strong reference or weak reference.
559 	 *
560 	 * The setup is that when there are no other references to @object,
561 	 * only a weak reference is held in the reverse direction from @object
562 	 * to the proxy object, but when there are other references held to
563 	 * @object, a strong reference is held. The @notify callback is called
564 	 * when the reference from @object to the proxy object should be
565 	 * "toggled" from strong to weak (@is_last_ref true) or weak to strong
566 	 * (@is_last_ref false).
567 	 *
568 	 * Since a (normal) reference must be held to the object before
569 	 * calling g_object_add_toggle_ref(), the initial state of the reverse
570 	 * link is always strong.
571 	 *
572 	 * Multiple toggle references may be added to the same gobject,
573 	 * however if there are multiple toggle references to an object, none
574 	 * of them will ever be notified until all but one are removed.  For
575 	 * this reason, you should only ever use a toggle reference if there
576 	 * is important state in the proxy object.
577 	 *
578 	 * Params:
579 	 *     notify = a function to call when this reference is the
580 	 *         last reference to the object, or is no longer
581 	 *         the last reference.
582 	 *     data = data to pass to @notify
583 	 *
584 	 * Since: 2.8
585 	 */
586 	public void addToggleRef(GToggleNotify notify, void* data)
587 	{
588 		g_object_add_toggle_ref(gObject, notify, data);
589 	}
590 
591 	/**
592 	 * Adds a weak reference from weak_pointer to @object to indicate that
593 	 * the pointer located at @weak_pointer_location is only valid during
594 	 * the lifetime of @object. When the @object is finalized,
595 	 * @weak_pointer will be set to %NULL.
596 	 *
597 	 * Note that as with g_object_weak_ref(), the weak references created by
598 	 * this method are not thread-safe: they cannot safely be used in one
599 	 * thread if the object's last g_object_unref() might happen in another
600 	 * thread. Use #GWeakRef if thread-safety is required.
601 	 *
602 	 * Params:
603 	 *     weakPointerLocation = The memory address
604 	 *         of a pointer.
605 	 */
606 	public void addWeakPointer(ref void* weakPointerLocation)
607 	{
608 		g_object_add_weak_pointer(gObject, &weakPointerLocation);
609 	}
610 
611 	/**
612 	 * Creates a binding between @source_property on @source and @target_property
613 	 * on @target. Whenever the @source_property is changed the @target_property is
614 	 * updated using the same value. For instance:
615 	 *
616 	 * |[
617 	 * g_object_bind_property (action, "active", widget, "sensitive", 0);
618 	 * ]|
619 	 *
620 	 * Will result in the "sensitive" property of the widget #GObject instance to be
621 	 * updated with the same value of the "active" property of the action #GObject
622 	 * instance.
623 	 *
624 	 * If @flags contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
625 	 * if @target_property on @target changes then the @source_property on @source
626 	 * will be updated as well.
627 	 *
628 	 * The binding will automatically be removed when either the @source or the
629 	 * @target instances are finalized. To remove the binding without affecting the
630 	 * @source and the @target you can just call g_object_unref() on the returned
631 	 * #GBinding instance.
632 	 *
633 	 * A #GObject can have multiple bindings.
634 	 *
635 	 * Params:
636 	 *     sourceProperty = the property on @source to bind
637 	 *     target = the target #GObject
638 	 *     targetProperty = the property on @target to bind
639 	 *     flags = flags to pass to #GBinding
640 	 *
641 	 * Returns: the #GBinding instance representing the
642 	 *     binding between the two #GObject instances. The binding is released
643 	 *     whenever the #GBinding reference count reaches zero.
644 	 *
645 	 * Since: 2.26
646 	 */
647 	public Binding bindProperty(string sourceProperty, ObjectG target, string targetProperty, GBindingFlags flags)
648 	{
649 		auto p = g_object_bind_property(gObject, Str.toStringz(sourceProperty), (target is null) ? null : target.getObjectGStruct(), Str.toStringz(targetProperty), flags);
650 
651 		if(p is null)
652 		{
653 			return null;
654 		}
655 
656 		return ObjectG.getDObject!(Binding)(cast(GBinding*) p);
657 	}
658 
659 	/**
660 	 * Complete version of g_object_bind_property().
661 	 *
662 	 * Creates a binding between @source_property on @source and @target_property
663 	 * on @target, allowing you to set the transformation functions to be used by
664 	 * the binding.
665 	 *
666 	 * If @flags contains %G_BINDING_BIDIRECTIONAL then the binding will be mutual:
667 	 * if @target_property on @target changes then the @source_property on @source
668 	 * will be updated as well. The @transform_from function is only used in case
669 	 * of bidirectional bindings, otherwise it will be ignored
670 	 *
671 	 * The binding will automatically be removed when either the @source or the
672 	 * @target instances are finalized. To remove the binding without affecting the
673 	 * @source and the @target you can just call g_object_unref() on the returned
674 	 * #GBinding instance.
675 	 *
676 	 * A #GObject can have multiple bindings.
677 	 *
678 	 * The same @user_data parameter will be used for both @transform_to
679 	 * and @transform_from transformation functions; the @notify function will
680 	 * be called once, when the binding is removed. If you need different data
681 	 * for each transformation function, please use
682 	 * g_object_bind_property_with_closures() instead.
683 	 *
684 	 * Params:
685 	 *     sourceProperty = the property on @source to bind
686 	 *     target = the target #GObject
687 	 *     targetProperty = the property on @target to bind
688 	 *     flags = flags to pass to #GBinding
689 	 *     transformTo = the transformation function
690 	 *         from the @source to the @target, or %NULL to use the default
691 	 *     transformFrom = the transformation function
692 	 *         from the @target to the @source, or %NULL to use the default
693 	 *     userData = custom data to be passed to the transformation functions,
694 	 *         or %NULL
695 	 *     notify = a function to call when disposing the binding, to free
696 	 *         resources used by the transformation functions, or %NULL if not required
697 	 *
698 	 * Returns: the #GBinding instance representing the
699 	 *     binding between the two #GObject instances. The binding is released
700 	 *     whenever the #GBinding reference count reaches zero.
701 	 *
702 	 * Since: 2.26
703 	 */
704 	public Binding bindPropertyFull(string sourceProperty, ObjectG target, string targetProperty, GBindingFlags flags, GBindingTransformFunc transformTo, GBindingTransformFunc transformFrom, void* userData, GDestroyNotify notify)
705 	{
706 		auto p = g_object_bind_property_full(gObject, Str.toStringz(sourceProperty), (target is null) ? null : target.getObjectGStruct(), Str.toStringz(targetProperty), flags, transformTo, transformFrom, userData, notify);
707 
708 		if(p is null)
709 		{
710 			return null;
711 		}
712 
713 		return ObjectG.getDObject!(Binding)(cast(GBinding*) p);
714 	}
715 
716 	/**
717 	 * Creates a binding between @source_property on @source and @target_property
718 	 * on @target, allowing you to set the transformation functions to be used by
719 	 * the binding.
720 	 *
721 	 * This function is the language bindings friendly version of
722 	 * g_object_bind_property_full(), using #GClosures instead of
723 	 * function pointers.
724 	 *
725 	 * Params:
726 	 *     sourceProperty = the property on @source to bind
727 	 *     target = the target #GObject
728 	 *     targetProperty = the property on @target to bind
729 	 *     flags = flags to pass to #GBinding
730 	 *     transformTo = a #GClosure wrapping the transformation function
731 	 *         from the @source to the @target, or %NULL to use the default
732 	 *     transformFrom = a #GClosure wrapping the transformation function
733 	 *         from the @target to the @source, or %NULL to use the default
734 	 *
735 	 * Returns: the #GBinding instance representing the
736 	 *     binding between the two #GObject instances. The binding is released
737 	 *     whenever the #GBinding reference count reaches zero.
738 	 *
739 	 * Since: 2.26
740 	 */
741 	public Binding bindPropertyWithClosures(string sourceProperty, ObjectG target, string targetProperty, GBindingFlags flags, Closure transformTo, Closure transformFrom)
742 	{
743 		auto p = g_object_bind_property_with_closures(gObject, Str.toStringz(sourceProperty), (target is null) ? null : target.getObjectGStruct(), Str.toStringz(targetProperty), flags, (transformTo is null) ? null : transformTo.getClosureStruct(), (transformFrom is null) ? null : transformFrom.getClosureStruct());
744 
745 		if(p is null)
746 		{
747 			return null;
748 		}
749 
750 		return ObjectG.getDObject!(Binding)(cast(GBinding*) p);
751 	}
752 
753 	/**
754 	 * This is a variant of g_object_get_data() which returns
755 	 * a 'duplicate' of the value. @dup_func defines the
756 	 * meaning of 'duplicate' in this context, it could e.g.
757 	 * take a reference on a ref-counted object.
758 	 *
759 	 * If the @key is not set on the object then @dup_func
760 	 * will be called with a %NULL argument.
761 	 *
762 	 * Note that @dup_func is called while user data of @object
763 	 * is locked.
764 	 *
765 	 * This function can be useful to avoid races when multiple
766 	 * threads are using object data on the same key on the same
767 	 * object.
768 	 *
769 	 * Params:
770 	 *     key = a string, naming the user data pointer
771 	 *     dupFunc = function to dup the value
772 	 *     userData = passed as user_data to @dup_func
773 	 *
774 	 * Returns: the result of calling @dup_func on the value
775 	 *     associated with @key on @object, or %NULL if not set.
776 	 *     If @dup_func is %NULL, the value is returned
777 	 *     unmodified.
778 	 *
779 	 * Since: 2.34
780 	 */
781 	public void* dupData(string key, GDuplicateFunc dupFunc, void* userData)
782 	{
783 		return g_object_dup_data(gObject, Str.toStringz(key), dupFunc, userData);
784 	}
785 
786 	/**
787 	 * This is a variant of g_object_get_qdata() which returns
788 	 * a 'duplicate' of the value. @dup_func defines the
789 	 * meaning of 'duplicate' in this context, it could e.g.
790 	 * take a reference on a ref-counted object.
791 	 *
792 	 * If the @quark is not set on the object then @dup_func
793 	 * will be called with a %NULL argument.
794 	 *
795 	 * Note that @dup_func is called while user data of @object
796 	 * is locked.
797 	 *
798 	 * This function can be useful to avoid races when multiple
799 	 * threads are using object data on the same key on the same
800 	 * object.
801 	 *
802 	 * Params:
803 	 *     quark = a #GQuark, naming the user data pointer
804 	 *     dupFunc = function to dup the value
805 	 *     userData = passed as user_data to @dup_func
806 	 *
807 	 * Returns: the result of calling @dup_func on the value
808 	 *     associated with @quark on @object, or %NULL if not set.
809 	 *     If @dup_func is %NULL, the value is returned
810 	 *     unmodified.
811 	 *
812 	 * Since: 2.34
813 	 */
814 	public void* dupQdata(GQuark quark, GDuplicateFunc dupFunc, void* userData)
815 	{
816 		return g_object_dup_qdata(gObject, quark, dupFunc, userData);
817 	}
818 
819 	/**
820 	 * This function is intended for #GObject implementations to re-enforce
821 	 * a [floating][floating-ref] object reference. Doing this is seldom
822 	 * required: all #GInitiallyUnowneds are created with a floating reference
823 	 * which usually just needs to be sunken by calling g_object_ref_sink().
824 	 *
825 	 * Since: 2.10
826 	 */
827 	public void forceFloating()
828 	{
829 		g_object_force_floating(gObject);
830 	}
831 
832 	/**
833 	 * Increases the freeze count on @object. If the freeze count is
834 	 * non-zero, the emission of "notify" signals on @object is
835 	 * stopped. The signals are queued until the freeze count is decreased
836 	 * to zero. Duplicate notifications are squashed so that at most one
837 	 * #GObject::notify signal is emitted for each property modified while the
838 	 * object is frozen.
839 	 *
840 	 * This is necessary for accessors that modify multiple properties to prevent
841 	 * premature notification while the object is still being modified.
842 	 */
843 	public void freezeNotify()
844 	{
845 		g_object_freeze_notify(gObject);
846 	}
847 
848 	/**
849 	 * Gets a named field from the objects table of associations (see g_object_set_data()).
850 	 *
851 	 * Params:
852 	 *     key = name of the key for that association
853 	 *
854 	 * Returns: the data if found,
855 	 *     or %NULL if no such data exists.
856 	 */
857 	public void* getData(string key)
858 	{
859 		return g_object_get_data(gObject, Str.toStringz(key));
860 	}
861 
862 	/**
863 	 * Gets a property of an object. @value must have been initialized to the
864 	 * expected type of the property (or a type to which the expected type can be
865 	 * transformed) using g_value_init().
866 	 *
867 	 * In general, a copy is made of the property contents and the caller is
868 	 * responsible for freeing the memory by calling g_value_unset().
869 	 *
870 	 * Note that g_object_get_property() is really intended for language
871 	 * bindings, g_object_get() is much more convenient for C programming.
872 	 *
873 	 * Params:
874 	 *     propertyName = the name of the property to get
875 	 *     value = return location for the property value
876 	 */
877 	public void getProperty(string propertyName, Value value)
878 	{
879 		g_object_get_property(gObject, Str.toStringz(propertyName), (value is null) ? null : value.getValueStruct());
880 	}
881 
882 	/**
883 	 * This function gets back user data pointers stored via
884 	 * g_object_set_qdata().
885 	 *
886 	 * Params:
887 	 *     quark = A #GQuark, naming the user data pointer
888 	 *
889 	 * Returns: The user data pointer set, or %NULL
890 	 */
891 	public void* getQdata(GQuark quark)
892 	{
893 		return g_object_get_qdata(gObject, quark);
894 	}
895 
896 	/**
897 	 * Gets properties of an object.
898 	 *
899 	 * In general, a copy is made of the property contents and the caller
900 	 * is responsible for freeing the memory in the appropriate manner for
901 	 * the type, for instance by calling g_free() or g_object_unref().
902 	 *
903 	 * See g_object_get().
904 	 *
905 	 * Params:
906 	 *     firstPropertyName = name of the first property to get
907 	 *     varArgs = return location for the first property, followed optionally by more
908 	 *         name/return location pairs, followed by %NULL
909 	 */
910 	public void getValist(string firstPropertyName, void* varArgs)
911 	{
912 		g_object_get_valist(gObject, Str.toStringz(firstPropertyName), varArgs);
913 	}
914 
915 	/**
916 	 * Gets @n_properties properties for an @object.
917 	 * Obtained properties will be set to @values. All properties must be valid.
918 	 * Warnings will be emitted and undefined behaviour may result if invalid
919 	 * properties are passed in.
920 	 *
921 	 * Params:
922 	 *     names = the names of each property to get
923 	 *     values = the values of each property to get
924 	 *
925 	 * Since: 2.54
926 	 */
927 	public void getv(string[] names, Value[] values)
928 	{
929 		GValue[] valuesArray = new GValue[values.length];
930 		for ( int i = 0; i < values.length; i++ )
931 		{
932 			valuesArray[i] = *(values[i].getValueStruct());
933 		}
934 
935 		g_object_getv(gObject, cast(uint)values.length, Str.toStringzArray(names), valuesArray.ptr);
936 	}
937 
938 	/**
939 	 * Checks whether @object has a [floating][floating-ref] reference.
940 	 *
941 	 * Returns: %TRUE if @object has a floating reference
942 	 *
943 	 * Since: 2.10
944 	 */
945 	public bool isFloating()
946 	{
947 		return g_object_is_floating(gObject) != 0;
948 	}
949 
950 	/**
951 	 * Emits a "notify" signal for the property @property_name on @object.
952 	 *
953 	 * When possible, eg. when signaling a property change from within the class
954 	 * that registered the property, you should use g_object_notify_by_pspec()
955 	 * instead.
956 	 *
957 	 * Note that emission of the notify signal may be blocked with
958 	 * g_object_freeze_notify(). In this case, the signal emissions are queued
959 	 * and will be emitted (in reverse order) when g_object_thaw_notify() is
960 	 * called.
961 	 *
962 	 * Params:
963 	 *     propertyName = the name of a property installed on the class of @object.
964 	 */
965 	public void notify(string propertyName)
966 	{
967 		g_object_notify(gObject, Str.toStringz(propertyName));
968 	}
969 
970 	/**
971 	 * Emits a "notify" signal for the property specified by @pspec on @object.
972 	 *
973 	 * This function omits the property name lookup, hence it is faster than
974 	 * g_object_notify().
975 	 *
976 	 * One way to avoid using g_object_notify() from within the
977 	 * class that registered the properties, and using g_object_notify_by_pspec()
978 	 * instead, is to store the GParamSpec used with
979 	 * g_object_class_install_property() inside a static array, e.g.:
980 	 *
981 	 * |[<!-- language="C" -->
982 	 * enum
983 	 * {
984 	 * PROP_0,
985 	 * PROP_FOO,
986 	 * PROP_LAST
987 	 * };
988 	 *
989 	 * static GParamSpec *properties[PROP_LAST];
990 	 *
991 	 * static void
992 	 * my_object_class_init (MyObjectClass *klass)
993 	 * {
994 	 * properties[PROP_FOO] = g_param_spec_int ("foo", "Foo", "The foo",
995 	 * 0, 100,
996 	 * 50,
997 	 * G_PARAM_READWRITE);
998 	 * g_object_class_install_property (gobject_class,
999 	 * PROP_FOO,
1000 	 * properties[PROP_FOO]);
1001 	 * }
1002 	 * ]|
1003 	 *
1004 	 * and then notify a change on the "foo" property with:
1005 	 *
1006 	 * |[<!-- language="C" -->
1007 	 * g_object_notify_by_pspec (self, properties[PROP_FOO]);
1008 	 * ]|
1009 	 *
1010 	 * Params:
1011 	 *     pspec = the #GParamSpec of a property installed on the class of @object.
1012 	 *
1013 	 * Since: 2.26
1014 	 */
1015 	public void notifyByPspec(ParamSpec pspec)
1016 	{
1017 		g_object_notify_by_pspec(gObject, (pspec is null) ? null : pspec.getParamSpecStruct());
1018 	}
1019 
1020 	/**
1021 	 * Increases the reference count of @object.
1022 	 *
1023 	 * Since GLib 2.56, if `GLIB_VERSION_MAX_ALLOWED` is 2.56 or greater, the type
1024 	 * of @object will be propagated to the return type (using the GCC typeof()
1025 	 * extension), so any casting the caller needs to do on the return type must be
1026 	 * explicit.
1027 	 *
1028 	 * Returns: the same @object
1029 	 */
1030 	public ObjectG doref()
1031 	{
1032 		auto p = g_object_ref(gObject);
1033 
1034 		if(p is null)
1035 		{
1036 			return null;
1037 		}
1038 
1039 		return ObjectG.getDObject!(ObjectG)(cast(GObject*) p);
1040 	}
1041 
1042 	/**
1043 	 * Increase the reference count of @object, and possibly remove the
1044 	 * [floating][floating-ref] reference, if @object has a floating reference.
1045 	 *
1046 	 * In other words, if the object is floating, then this call "assumes
1047 	 * ownership" of the floating reference, converting it to a normal
1048 	 * reference by clearing the floating flag while leaving the reference
1049 	 * count unchanged.  If the object is not floating, then this call
1050 	 * adds a new normal reference increasing the reference count by one.
1051 	 *
1052 	 * Since GLib 2.56, the type of @object will be propagated to the return type
1053 	 * under the same conditions as for g_object_ref().
1054 	 *
1055 	 * Returns: @object
1056 	 *
1057 	 * Since: 2.10
1058 	 */
1059 	public ObjectG refSink()
1060 	{
1061 		auto p = g_object_ref_sink(gObject);
1062 
1063 		if(p is null)
1064 		{
1065 			return null;
1066 		}
1067 
1068 		return ObjectG.getDObject!(ObjectG)(cast(GObject*) p);
1069 	}
1070 
1071 	/**
1072 	 * Removes a reference added with g_object_add_toggle_ref(). The
1073 	 * reference count of the object is decreased by one.
1074 	 *
1075 	 * Params:
1076 	 *     notify = a function to call when this reference is the
1077 	 *         last reference to the object, or is no longer
1078 	 *         the last reference.
1079 	 *     data = data to pass to @notify
1080 	 *
1081 	 * Since: 2.8
1082 	 */
1083 	public void removeToggleRef(GToggleNotify notify, void* data)
1084 	{
1085 		g_object_remove_toggle_ref(gObject, notify, data);
1086 	}
1087 
1088 	/**
1089 	 * Removes a weak reference from @object that was previously added
1090 	 * using g_object_add_weak_pointer(). The @weak_pointer_location has
1091 	 * to match the one used with g_object_add_weak_pointer().
1092 	 *
1093 	 * Params:
1094 	 *     weakPointerLocation = The memory address
1095 	 *         of a pointer.
1096 	 */
1097 	public void removeWeakPointer(ref void* weakPointerLocation)
1098 	{
1099 		g_object_remove_weak_pointer(gObject, &weakPointerLocation);
1100 	}
1101 
1102 	/**
1103 	 * Compares the user data for the key @key on @object with
1104 	 * @oldval, and if they are the same, replaces @oldval with
1105 	 * @newval.
1106 	 *
1107 	 * This is like a typical atomic compare-and-exchange
1108 	 * operation, for user data on an object.
1109 	 *
1110 	 * If the previous value was replaced then ownership of the
1111 	 * old value (@oldval) is passed to the caller, including
1112 	 * the registered destroy notify for it (passed out in @old_destroy).
1113 	 * It’s up to the caller to free this as needed, which may
1114 	 * or may not include using @old_destroy as sometimes replacement
1115 	 * should not destroy the object in the normal way.
1116 	 *
1117 	 * Params:
1118 	 *     key = a string, naming the user data pointer
1119 	 *     oldval = the old value to compare against
1120 	 *     newval = the new value
1121 	 *     destroy = a destroy notify for the new value
1122 	 *     oldDestroy = destroy notify for the existing value
1123 	 *
1124 	 * Returns: %TRUE if the existing value for @key was replaced
1125 	 *     by @newval, %FALSE otherwise.
1126 	 *
1127 	 * Since: 2.34
1128 	 */
1129 	public bool replaceData(string key, void* oldval, void* newval, GDestroyNotify destroy, out GDestroyNotify oldDestroy)
1130 	{
1131 		return g_object_replace_data(gObject, Str.toStringz(key), oldval, newval, destroy, &oldDestroy) != 0;
1132 	}
1133 
1134 	/**
1135 	 * Compares the user data for the key @quark on @object with
1136 	 * @oldval, and if they are the same, replaces @oldval with
1137 	 * @newval.
1138 	 *
1139 	 * This is like a typical atomic compare-and-exchange
1140 	 * operation, for user data on an object.
1141 	 *
1142 	 * If the previous value was replaced then ownership of the
1143 	 * old value (@oldval) is passed to the caller, including
1144 	 * the registered destroy notify for it (passed out in @old_destroy).
1145 	 * It’s up to the caller to free this as needed, which may
1146 	 * or may not include using @old_destroy as sometimes replacement
1147 	 * should not destroy the object in the normal way.
1148 	 *
1149 	 * Params:
1150 	 *     quark = a #GQuark, naming the user data pointer
1151 	 *     oldval = the old value to compare against
1152 	 *     newval = the new value
1153 	 *     destroy = a destroy notify for the new value
1154 	 *     oldDestroy = destroy notify for the existing value
1155 	 *
1156 	 * Returns: %TRUE if the existing value for @quark was replaced
1157 	 *     by @newval, %FALSE otherwise.
1158 	 *
1159 	 * Since: 2.34
1160 	 */
1161 	public bool replaceQdata(GQuark quark, void* oldval, void* newval, GDestroyNotify destroy, out GDestroyNotify oldDestroy)
1162 	{
1163 		return g_object_replace_qdata(gObject, quark, oldval, newval, destroy, &oldDestroy) != 0;
1164 	}
1165 
1166 	/**
1167 	 * Releases all references to other objects. This can be used to break
1168 	 * reference cycles.
1169 	 *
1170 	 * This function should only be called from object system implementations.
1171 	 */
1172 	public void runDispose()
1173 	{
1174 		g_object_run_dispose(gObject);
1175 	}
1176 
1177 	/**
1178 	 * Each object carries around a table of associations from
1179 	 * strings to pointers.  This function lets you set an association.
1180 	 *
1181 	 * If the object already had an association with that name,
1182 	 * the old association will be destroyed.
1183 	 *
1184 	 * Params:
1185 	 *     key = name of the key
1186 	 *     data = data to associate with that key
1187 	 */
1188 	public void setData(string key, void* data)
1189 	{
1190 		g_object_set_data(gObject, Str.toStringz(key), data);
1191 	}
1192 
1193 	/**
1194 	 * Like g_object_set_data() except it adds notification
1195 	 * for when the association is destroyed, either by setting it
1196 	 * to a different value or when the object is destroyed.
1197 	 *
1198 	 * Note that the @destroy callback is not called if @data is %NULL.
1199 	 *
1200 	 * Params:
1201 	 *     key = name of the key
1202 	 *     data = data to associate with that key
1203 	 *     destroy = function to call when the association is destroyed
1204 	 */
1205 	public void setDataFull(string key, void* data, GDestroyNotify destroy)
1206 	{
1207 		g_object_set_data_full(gObject, Str.toStringz(key), data, destroy);
1208 	}
1209 
1210 	/**
1211 	 * Sets a property on an object.
1212 	 *
1213 	 * Params:
1214 	 *     propertyName = the name of the property to set
1215 	 *     value = the value
1216 	 */
1217 	public void setProperty(string propertyName, Value value)
1218 	{
1219 		g_object_set_property(gObject, Str.toStringz(propertyName), (value is null) ? null : value.getValueStruct());
1220 	}
1221 
1222 	/**
1223 	 * This sets an opaque, named pointer on an object.
1224 	 * The name is specified through a #GQuark (retrived e.g. via
1225 	 * g_quark_from_static_string()), and the pointer
1226 	 * can be gotten back from the @object with g_object_get_qdata()
1227 	 * until the @object is finalized.
1228 	 * Setting a previously set user data pointer, overrides (frees)
1229 	 * the old pointer set, using #NULL as pointer essentially
1230 	 * removes the data stored.
1231 	 *
1232 	 * Params:
1233 	 *     quark = A #GQuark, naming the user data pointer
1234 	 *     data = An opaque user data pointer
1235 	 */
1236 	public void setQdata(GQuark quark, void* data)
1237 	{
1238 		g_object_set_qdata(gObject, quark, data);
1239 	}
1240 
1241 	/**
1242 	 * This function works like g_object_set_qdata(), but in addition,
1243 	 * a void (*destroy) (gpointer) function may be specified which is
1244 	 * called with @data as argument when the @object is finalized, or
1245 	 * the data is being overwritten by a call to g_object_set_qdata()
1246 	 * with the same @quark.
1247 	 *
1248 	 * Params:
1249 	 *     quark = A #GQuark, naming the user data pointer
1250 	 *     data = An opaque user data pointer
1251 	 *     destroy = Function to invoke with @data as argument, when @data
1252 	 *         needs to be freed
1253 	 */
1254 	public void setQdataFull(GQuark quark, void* data, GDestroyNotify destroy)
1255 	{
1256 		g_object_set_qdata_full(gObject, quark, data, destroy);
1257 	}
1258 
1259 	/**
1260 	 * Sets properties on an object.
1261 	 *
1262 	 * Params:
1263 	 *     firstPropertyName = name of the first property to set
1264 	 *     varArgs = value for the first property, followed optionally by more
1265 	 *         name/value pairs, followed by %NULL
1266 	 */
1267 	public void setValist(string firstPropertyName, void* varArgs)
1268 	{
1269 		g_object_set_valist(gObject, Str.toStringz(firstPropertyName), varArgs);
1270 	}
1271 
1272 	/**
1273 	 * Sets @n_properties properties for an @object.
1274 	 * Properties to be set will be taken from @values. All properties must be
1275 	 * valid. Warnings will be emitted and undefined behaviour may result if invalid
1276 	 * properties are passed in.
1277 	 *
1278 	 * Params:
1279 	 *     names = the names of each property to be set
1280 	 *     values = the values of each property to be set
1281 	 *
1282 	 * Since: 2.54
1283 	 */
1284 	public void setv(string[] names, Value[] values)
1285 	{
1286 		GValue[] valuesArray = new GValue[values.length];
1287 		for ( int i = 0; i < values.length; i++ )
1288 		{
1289 			valuesArray[i] = *(values[i].getValueStruct());
1290 		}
1291 
1292 		g_object_setv(gObject, cast(uint)values.length, Str.toStringzArray(names), valuesArray.ptr);
1293 	}
1294 
1295 	/**
1296 	 * Remove a specified datum from the object's data associations,
1297 	 * without invoking the association's destroy handler.
1298 	 *
1299 	 * Params:
1300 	 *     key = name of the key
1301 	 *
1302 	 * Returns: the data if found, or %NULL
1303 	 *     if no such data exists.
1304 	 */
1305 	public void* stealData(string key)
1306 	{
1307 		return g_object_steal_data(gObject, Str.toStringz(key));
1308 	}
1309 
1310 	/**
1311 	 * This function gets back user data pointers stored via
1312 	 * g_object_set_qdata() and removes the @data from object
1313 	 * without invoking its destroy() function (if any was
1314 	 * set).
1315 	 * Usually, calling this function is only required to update
1316 	 * user data pointers with a destroy notifier, for example:
1317 	 * |[<!-- language="C" -->
1318 	 * void
1319 	 * object_add_to_user_list (GObject     *object,
1320 	 * const gchar *new_string)
1321 	 * {
1322 	 * // the quark, naming the object data
1323 	 * GQuark quark_string_list = g_quark_from_static_string ("my-string-list");
1324 	 * // retrive the old string list
1325 	 * GList *list = g_object_steal_qdata (object, quark_string_list);
1326 	 *
1327 	 * // prepend new string
1328 	 * list = g_list_prepend (list, g_strdup (new_string));
1329 	 * // this changed 'list', so we need to set it again
1330 	 * g_object_set_qdata_full (object, quark_string_list, list, free_string_list);
1331 	 * }
1332 	 * static void
1333 	 * free_string_list (gpointer data)
1334 	 * {
1335 	 * GList *node, *list = data;
1336 	 *
1337 	 * for (node = list; node; node = node->next)
1338 	 * g_free (node->data);
1339 	 * g_list_free (list);
1340 	 * }
1341 	 * ]|
1342 	 * Using g_object_get_qdata() in the above example, instead of
1343 	 * g_object_steal_qdata() would have left the destroy function set,
1344 	 * and thus the partial string list would have been freed upon
1345 	 * g_object_set_qdata_full().
1346 	 *
1347 	 * Params:
1348 	 *     quark = A #GQuark, naming the user data pointer
1349 	 *
1350 	 * Returns: The user data pointer set, or %NULL
1351 	 */
1352 	public void* stealQdata(GQuark quark)
1353 	{
1354 		return g_object_steal_qdata(gObject, quark);
1355 	}
1356 
1357 	/**
1358 	 * Reverts the effect of a previous call to
1359 	 * g_object_freeze_notify(). The freeze count is decreased on @object
1360 	 * and when it reaches zero, queued "notify" signals are emitted.
1361 	 *
1362 	 * Duplicate notifications for each property are squashed so that at most one
1363 	 * #GObject::notify signal is emitted for each property, in the reverse order
1364 	 * in which they have been queued.
1365 	 *
1366 	 * It is an error to call this function when the freeze count is zero.
1367 	 */
1368 	public void thawNotify()
1369 	{
1370 		g_object_thaw_notify(gObject);
1371 	}
1372 
1373 	/**
1374 	 * Decreases the reference count of @object. When its reference count
1375 	 * drops to 0, the object is finalized (i.e. its memory is freed).
1376 	 *
1377 	 * If the pointer to the #GObject may be reused in future (for example, if it is
1378 	 * an instance variable of another object), it is recommended to clear the
1379 	 * pointer to %NULL rather than retain a dangling pointer to a potentially
1380 	 * invalid #GObject instance. Use g_clear_object() for this.
1381 	 */
1382 	public void unref()
1383 	{
1384 		g_object_unref(gObject);
1385 	}
1386 
1387 	/**
1388 	 * This function essentially limits the life time of the @closure to
1389 	 * the life time of the object. That is, when the object is finalized,
1390 	 * the @closure is invalidated by calling g_closure_invalidate() on
1391 	 * it, in order to prevent invocations of the closure with a finalized
1392 	 * (nonexisting) object. Also, g_object_ref() and g_object_unref() are
1393 	 * added as marshal guards to the @closure, to ensure that an extra
1394 	 * reference count is held on @object during invocation of the
1395 	 * @closure.  Usually, this function will be called on closures that
1396 	 * use this @object as closure data.
1397 	 *
1398 	 * Params:
1399 	 *     closure = GClosure to watch
1400 	 */
1401 	public void watchClosure(Closure closure)
1402 	{
1403 		g_object_watch_closure(gObject, (closure is null) ? null : closure.getClosureStruct());
1404 	}
1405 
1406 	/**
1407 	 * Adds a weak reference callback to an object. Weak references are
1408 	 * used for notification when an object is finalized. They are called
1409 	 * "weak references" because they allow you to safely hold a pointer
1410 	 * to an object without calling g_object_ref() (g_object_ref() adds a
1411 	 * strong reference, that is, forces the object to stay alive).
1412 	 *
1413 	 * Note that the weak references created by this method are not
1414 	 * thread-safe: they cannot safely be used in one thread if the
1415 	 * object's last g_object_unref() might happen in another thread.
1416 	 * Use #GWeakRef if thread-safety is required.
1417 	 *
1418 	 * Params:
1419 	 *     notify = callback to invoke before the object is freed
1420 	 *     data = extra data to pass to notify
1421 	 */
1422 	public void weakRef(GWeakNotify notify, void* data)
1423 	{
1424 		g_object_weak_ref(gObject, notify, data);
1425 	}
1426 
1427 	/**
1428 	 * Removes a weak reference callback to an object.
1429 	 *
1430 	 * Params:
1431 	 *     notify = callback to search for
1432 	 *     data = data to search for
1433 	 */
1434 	public void weakUnref(GWeakNotify notify, void* data)
1435 	{
1436 		g_object_weak_unref(gObject, notify, data);
1437 	}
1438 
1439 	/**
1440 	 * Clears a reference to a #GObject.
1441 	 *
1442 	 * @object_ptr must not be %NULL.
1443 	 *
1444 	 * If the reference is %NULL then this function does nothing.
1445 	 * Otherwise, the reference count of the object is decreased and the
1446 	 * pointer is set to %NULL.
1447 	 *
1448 	 * A macro is also included that allows this function to be used without
1449 	 * pointer casts.
1450 	 *
1451 	 * Params:
1452 	 *     objectPtr = a pointer to a #GObject reference
1453 	 *
1454 	 * Since: 2.28
1455 	 */
1456 	public static void clearObject(ref ObjectG objectPtr)
1457 	{
1458 		GObject* outobjectPtr = objectPtr.getObjectGStruct();
1459 
1460 		g_clear_object(&outobjectPtr);
1461 
1462 		objectPtr = ObjectG.getDObject!(ObjectG)(outobjectPtr);
1463 	}
1464 }