1 /*
2  * This file is part of gtkD.
3  *
4  * gtkD is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU Lesser General Public License
6  * as published by the Free Software Foundation; either version 3
7  * of the License, or (at your option) any later version, with
8  * some exceptions, please read the COPYING file.
9  *
10  * gtkD is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU Lesser General Public License for more details.
14  *
15  * You should have received a copy of the GNU Lesser General Public License
16  * along with gtkD; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110, USA
18  */
19 
20 // generated automatically - do not change
21 // find conversion definition on APILookup.txt
22 // implement new conversion functionalities on the wrap.utils pakage
23 
24 
25 module glib.Variant;
26 
27 private import glib.Bytes;
28 private import glib.ConstructionException;
29 private import glib.ErrorG;
30 private import glib.GException;
31 private import glib.Str;
32 private import glib.StringG;
33 private import glib.VariantIter;
34 private import glib.VariantType;
35 private import gtkc.glib;
36 public  import gtkc.glibtypes;
37 private import gtkd.Loader;
38 
39 
40 /**
41  * #GVariant is a variant datatype; it can contain one or more values
42  * along with information about the type of the values.
43  * 
44  * A #GVariant may contain simple types, like an integer, or a boolean value;
45  * or complex types, like an array of two strings, or a dictionary of key
46  * value pairs. A #GVariant is also immutable: once it's been created neither
47  * its type nor its content can be modified further.
48  * 
49  * GVariant is useful whenever data needs to be serialized, for example when
50  * sending method parameters in DBus, or when saving settings using GSettings.
51  * 
52  * When creating a new #GVariant, you pass the data you want to store in it
53  * along with a string representing the type of data you wish to pass to it.
54  * 
55  * For instance, if you want to create a #GVariant holding an integer value you
56  * can use:
57  * 
58  * |[<!-- language="C" -->
59  * GVariant *v = g_variant_new ('u', 40);
60  * ]|
61  * 
62  * The string 'u' in the first argument tells #GVariant that the data passed to
63  * the constructor (40) is going to be an unsigned integer.
64  * 
65  * More advanced examples of #GVariant in use can be found in documentation for
66  * [GVariant format strings][gvariant-format-strings-pointers].
67  * 
68  * The range of possible values is determined by the type.
69  * 
70  * The type system used by #GVariant is #GVariantType.
71  * 
72  * #GVariant instances always have a type and a value (which are given
73  * at construction time).  The type and value of a #GVariant instance
74  * can never change other than by the #GVariant itself being
75  * destroyed.  A #GVariant cannot contain a pointer.
76  * 
77  * #GVariant is reference counted using g_variant_ref() and
78  * g_variant_unref().  #GVariant also has floating reference counts --
79  * see g_variant_ref_sink().
80  * 
81  * #GVariant is completely threadsafe.  A #GVariant instance can be
82  * concurrently accessed in any way from any number of threads without
83  * problems.
84  * 
85  * #GVariant is heavily optimised for dealing with data in serialised
86  * form.  It works particularly well with data located in memory-mapped
87  * files.  It can perform nearly all deserialisation operations in a
88  * small constant time, usually touching only a single memory page.
89  * Serialised #GVariant data can also be sent over the network.
90  * 
91  * #GVariant is largely compatible with D-Bus.  Almost all types of
92  * #GVariant instances can be sent over D-Bus.  See #GVariantType for
93  * exceptions.  (However, #GVariant's serialisation format is not the same
94  * as the serialisation format of a D-Bus message body: use #GDBusMessage,
95  * in the gio library, for those.)
96  * 
97  * For space-efficiency, the #GVariant serialisation format does not
98  * automatically include the variant's length, type or endianness,
99  * which must either be implied from context (such as knowledge that a
100  * particular file format always contains a little-endian
101  * %G_VARIANT_TYPE_VARIANT which occupies the whole length of the file)
102  * or supplied out-of-band (for instance, a length, type and/or endianness
103  * indicator could be placed at the beginning of a file, network message
104  * or network stream).
105  * 
106  * A #GVariant's size is limited mainly by any lower level operating
107  * system constraints, such as the number of bits in #gsize.  For
108  * example, it is reasonable to have a 2GB file mapped into memory
109  * with #GMappedFile, and call g_variant_new_from_data() on it.
110  * 
111  * For convenience to C programmers, #GVariant features powerful
112  * varargs-based value construction and destruction.  This feature is
113  * designed to be embedded in other libraries.
114  * 
115  * There is a Python-inspired text language for describing #GVariant
116  * values.  #GVariant includes a printer for this language and a parser
117  * with type inferencing.
118  * 
119  * ## Memory Use
120  * 
121  * #GVariant tries to be quite efficient with respect to memory use.
122  * This section gives a rough idea of how much memory is used by the
123  * current implementation.  The information here is subject to change
124  * in the future.
125  * 
126  * The memory allocated by #GVariant can be grouped into 4 broad
127  * purposes: memory for serialised data, memory for the type
128  * information cache, buffer management memory and memory for the
129  * #GVariant structure itself.
130  * 
131  * ## Serialised Data Memory
132  * 
133  * This is the memory that is used for storing GVariant data in
134  * serialised form.  This is what would be sent over the network or
135  * what would end up on disk, not counting any indicator of the
136  * endianness, or of the length or type of the top-level variant.
137  * 
138  * The amount of memory required to store a boolean is 1 byte. 16,
139  * 32 and 64 bit integers and double precision floating point numbers
140  * use their "natural" size.  Strings (including object path and
141  * signature strings) are stored with a nul terminator, and as such
142  * use the length of the string plus 1 byte.
143  * 
144  * Maybe types use no space at all to represent the null value and
145  * use the same amount of space (sometimes plus one byte) as the
146  * equivalent non-maybe-typed value to represent the non-null case.
147  * 
148  * Arrays use the amount of space required to store each of their
149  * members, concatenated.  Additionally, if the items stored in an
150  * array are not of a fixed-size (ie: strings, other arrays, etc)
151  * then an additional framing offset is stored for each item.  The
152  * size of this offset is either 1, 2 or 4 bytes depending on the
153  * overall size of the container.  Additionally, extra padding bytes
154  * are added as required for alignment of child values.
155  * 
156  * Tuples (including dictionary entries) use the amount of space
157  * required to store each of their members, concatenated, plus one
158  * framing offset (as per arrays) for each non-fixed-sized item in
159  * the tuple, except for the last one.  Additionally, extra padding
160  * bytes are added as required for alignment of child values.
161  * 
162  * Variants use the same amount of space as the item inside of the
163  * variant, plus 1 byte, plus the length of the type string for the
164  * item inside the variant.
165  * 
166  * As an example, consider a dictionary mapping strings to variants.
167  * In the case that the dictionary is empty, 0 bytes are required for
168  * the serialisation.
169  * 
170  * If we add an item "width" that maps to the int32 value of 500 then
171  * we will use 4 byte to store the int32 (so 6 for the variant
172  * containing it) and 6 bytes for the string.  The variant must be
173  * aligned to 8 after the 6 bytes of the string, so that's 2 extra
174  * bytes.  6 (string) + 2 (padding) + 6 (variant) is 14 bytes used
175  * for the dictionary entry.  An additional 1 byte is added to the
176  * array as a framing offset making a total of 15 bytes.
177  * 
178  * If we add another entry, "title" that maps to a nullable string
179  * that happens to have a value of null, then we use 0 bytes for the
180  * null value (and 3 bytes for the variant to contain it along with
181  * its type string) plus 6 bytes for the string.  Again, we need 2
182  * padding bytes.  That makes a total of 6 + 2 + 3 = 11 bytes.
183  * 
184  * We now require extra padding between the two items in the array.
185  * After the 14 bytes of the first item, that's 2 bytes required.
186  * We now require 2 framing offsets for an extra two
187  * bytes. 14 + 2 + 11 + 2 = 29 bytes to encode the entire two-item
188  * dictionary.
189  * 
190  * ## Type Information Cache
191  * 
192  * For each GVariant type that currently exists in the program a type
193  * information structure is kept in the type information cache.  The
194  * type information structure is required for rapid deserialisation.
195  * 
196  * Continuing with the above example, if a #GVariant exists with the
197  * type "a{sv}" then a type information struct will exist for
198  * "a{sv}", "{sv}", "s", and "v".  Multiple uses of the same type
199  * will share the same type information.  Additionally, all
200  * single-digit types are stored in read-only static memory and do
201  * not contribute to the writable memory footprint of a program using
202  * #GVariant.
203  * 
204  * Aside from the type information structures stored in read-only
205  * memory, there are two forms of type information.  One is used for
206  * container types where there is a single element type: arrays and
207  * maybe types.  The other is used for container types where there
208  * are multiple element types: tuples and dictionary entries.
209  * 
210  * Array type info structures are 6 * sizeof (void *), plus the
211  * memory required to store the type string itself.  This means that
212  * on 32-bit systems, the cache entry for "a{sv}" would require 30
213  * bytes of memory (plus malloc overhead).
214  * 
215  * Tuple type info structures are 6 * sizeof (void *), plus 4 *
216  * sizeof (void *) for each item in the tuple, plus the memory
217  * required to store the type string itself.  A 2-item tuple, for
218  * example, would have a type information structure that consumed
219  * writable memory in the size of 14 * sizeof (void *) (plus type
220  * string)  This means that on 32-bit systems, the cache entry for
221  * "{sv}" would require 61 bytes of memory (plus malloc overhead).
222  * 
223  * This means that in total, for our "a{sv}" example, 91 bytes of
224  * type information would be allocated.
225  * 
226  * The type information cache, additionally, uses a #GHashTable to
227  * store and lookup the cached items and stores a pointer to this
228  * hash table in static storage.  The hash table is freed when there
229  * are zero items in the type cache.
230  * 
231  * Although these sizes may seem large it is important to remember
232  * that a program will probably only have a very small number of
233  * different types of values in it and that only one type information
234  * structure is required for many different values of the same type.
235  * 
236  * ## Buffer Management Memory
237  * 
238  * #GVariant uses an internal buffer management structure to deal
239  * with the various different possible sources of serialised data
240  * that it uses.  The buffer is responsible for ensuring that the
241  * correct call is made when the data is no longer in use by
242  * #GVariant.  This may involve a g_free() or a g_slice_free() or
243  * even g_mapped_file_unref().
244  * 
245  * One buffer management structure is used for each chunk of
246  * serialised data.  The size of the buffer management structure
247  * is 4 * (void *).  On 32-bit systems, that's 16 bytes.
248  * 
249  * ## GVariant structure
250  * 
251  * The size of a #GVariant structure is 6 * (void *).  On 32-bit
252  * systems, that's 24 bytes.
253  * 
254  * #GVariant structures only exist if they are explicitly created
255  * with API calls.  For example, if a #GVariant is constructed out of
256  * serialised data for the example given above (with the dictionary)
257  * then although there are 9 individual values that comprise the
258  * entire dictionary (two keys, two values, two variants containing
259  * the values, two dictionary entries, plus the dictionary itself),
260  * only 1 #GVariant instance exists -- the one referring to the
261  * dictionary.
262  * 
263  * If calls are made to start accessing the other values then
264  * #GVariant instances will exist for those values only for as long
265  * as they are in use (ie: until you call g_variant_unref()).  The
266  * type information is shared.  The serialised data and the buffer
267  * management structure for that serialised data is shared by the
268  * child.
269  * 
270  * ## Summary
271  * 
272  * To put the entire example together, for our dictionary mapping
273  * strings to variants (with two entries, as given above), we are
274  * using 91 bytes of memory for type information, 29 byes of memory
275  * for the serialised data, 16 bytes for buffer management and 24
276  * bytes for the #GVariant instance, or a total of 160 bytes, plus
277  * malloc overhead.  If we were to use g_variant_get_child_value() to
278  * access the two dictionary entries, we would use an additional 48
279  * bytes.  If we were to have other dictionaries of the same type, we
280  * would use more memory for the serialised data and buffer
281  * management for those dictionaries, but the type information would
282  * be shared.
283  *
284  * Since: 2.24
285  */
286 public class Variant
287 {
288 	/** the main Gtk struct */
289 	protected GVariant* gVariant;
290 	protected bool ownedRef;
291 
292 	/** Get the main Gtk struct */
293 	public GVariant* getVariantStruct(bool transferOwnership = false)
294 	{
295 		if (transferOwnership)
296 			ownedRef = false;
297 		return gVariant;
298 	}
299 
300 	/** the main Gtk struct as a void* */
301 	protected void* getStruct()
302 	{
303 		return cast(void*)gVariant;
304 	}
305 
306 	/**
307 	 * Sets our main struct and passes it to the parent class.
308 	 */
309 	public this (GVariant* gVariant, bool ownedRef = false)
310 	{
311 		this.gVariant = gVariant;
312 		this.ownedRef = ownedRef;
313 	}
314 
315 	~this ()
316 	{
317 		if (  Linker.isLoaded(LIBRARY_GLIB) && ownedRef )
318 			g_variant_unref(gVariant);
319 	}
320 
321 	/**
322 	 * Creates a DBus object path GVariant with the contents of string.
323 	 * string must be a valid DBus object path.
324 	 * Use Variant.isObjectPath() if you're not sure.
325 	 *
326 	 * Since: 2.24
327 	 *
328 	 * Throws: ConstructionException GTK+ fails to create the object.
329 	 */
330 	public static Variant fromObjectPath(string path)
331 	{
332 		auto p = g_variant_new_object_path(Str.toStringz(path));
333 		if(p is null)
334 		{
335 			throw new ConstructionException("null returned by g_variant_new_object_path");
336 		}
337 		return new Variant(cast(GVariant*) p);
338 	}
339 	
340 	/**
341 	 * Creates a DBus type signature GVariant with the contents of string.
342 	 * string must be a valid DBus type signature.
343 	 * Use Variant.isSignature() if you're not sure.
344 	 *
345 	 * Since: 2.24
346 	 *
347 	 * Throws: ConstructionException GTK+ fails to create the object.
348 	 */
349 	public static Variant fromSignature(string signature)
350 	{
351 		auto p = g_variant_new_signature(Str.toStringz(signature));
352 		if(p is null)
353 		{
354 			throw new ConstructionException("null returned by g_variant_new_signature");
355 		}
356 		return new Variant(cast(GVariant*) p);
357 	}
358 	
359 	/**
360 	 * Creates an array-of-bytes GVariant with the contents of string.
361 	 * This function is just like new Variant(string) except that the string
362 	 * need not be valid utf8.
363 	 *
364 	 * The nul terminator character at the end of the string is stored in
365 	 * the array.
366 	 *
367 	 * Throws: ConstructionException GTK+ fails to create the object.
368 	 */
369 	public static Variant fromByteString(string byteString)
370 	{
371 		auto p = g_variant_new_bytestring(Str.toStringz(byteString));
372 		if(p is null)
373 		{
374 			throw new ConstructionException("null returned by g_variant_new_bytestring");
375 		}
376 		return new Variant(cast(GVariant*) p);
377 	}
378 	
379 	/**
380 	 * Constructs an array of object paths Variant from the given array
381 	 * of strings.
382 	 *
383 	 * Each string must be a valid Variant object path.
384 	 *
385 	 * Since: 2.30
386 	 *
387 	 * Params:
388 	 *     strv   = an array of strings.
389 	 *
390 	 * Throws: ConstructionException GTK+ fails to create the object.
391 	 */
392 	public static Variant fromObjv(string[] strv)
393 	{
394 		// GVariant * g_variant_new_objv (const gchar * const *strv,  gssize length);
395 		auto p = g_variant_new_objv(Str.toStringzArray(strv), strv.length);
396 		if(p is null)
397 		{
398 			throw new ConstructionException("null returned by g_variant_new_objv(strv, length)");
399 		}
400 		return new Variant(cast(GVariant*) p);
401 	}
402 	
403 	/**
404 	 * Constructs an array of bytestring GVariant from the given array of
405 	 * strings. If length is -1 then strv is null-terminated.
406 	 *
407 	 * Since: 2.26
408 	 *
409 	 * Params:
410 	 *     strv   = an array of strings.
411 	 *
412 	 * Throws: ConstructionException GTK+ fails to create the object.
413 	 */
414 	public static Variant fromByteStringArray(string[] strv)
415 	{
416 		auto p = g_variant_new_bytestring_array(Str.toStringzArray(strv), strv.length);
417 		if(p is null)
418 		{
419 			throw new ConstructionException("null returned by g_variant_new_bytestring_array(strv, length)");
420 		}
421 		return new Variant(cast(GVariant*) p);
422 	}
423 
424 	/**
425 	 */
426 
427 	/**
428 	 * Creates a new #GVariant array from @children.
429 	 *
430 	 * @child_type must be non-%NULL if @n_children is zero.  Otherwise, the
431 	 * child type is determined by inspecting the first element of the
432 	 * @children array.  If @child_type is non-%NULL then it must be a
433 	 * definite type.
434 	 *
435 	 * The items of the array are taken from the @children array.  No entry
436 	 * in the @children array may be %NULL.
437 	 *
438 	 * All items in the array must have the same type, which must be the
439 	 * same as @child_type, if given.
440 	 *
441 	 * If the @children are floating references (see g_variant_ref_sink()), the
442 	 * new instance takes ownership of them as if via g_variant_ref_sink().
443 	 *
444 	 * Params:
445 	 *     childType = the element type of the new array
446 	 *     children = an array of
447 	 *         #GVariant pointers, the children
448 	 *     nChildren = the length of @children
449 	 *
450 	 * Returns: a floating reference to a new #GVariant array
451 	 *
452 	 * Since: 2.24
453 	 *
454 	 * Throws: ConstructionException GTK+ fails to create the object.
455 	 */
456 	public this(VariantType childType, Variant[] children)
457 	{
458 		GVariant*[] childrenArray = new GVariant*[children.length];
459 		for ( int i = 0; i < children.length; i++ )
460 		{
461 			childrenArray[i] = children[i].getVariantStruct();
462 		}
463 		
464 		auto p = g_variant_new_array((childType is null) ? null : childType.getVariantTypeStruct(), childrenArray.ptr, cast(size_t)children.length);
465 		
466 		if(p is null)
467 		{
468 			throw new ConstructionException("null returned by new_array");
469 		}
470 		
471 		this(cast(GVariant*) p);
472 	}
473 
474 	/**
475 	 * Creates a new boolean #GVariant instance -- either %TRUE or %FALSE.
476 	 *
477 	 * Params:
478 	 *     value = a #gboolean value
479 	 *
480 	 * Returns: a floating reference to a new boolean #GVariant instance
481 	 *
482 	 * Since: 2.24
483 	 *
484 	 * Throws: ConstructionException GTK+ fails to create the object.
485 	 */
486 	public this(bool value)
487 	{
488 		auto p = g_variant_new_boolean(value);
489 		
490 		if(p is null)
491 		{
492 			throw new ConstructionException("null returned by new_boolean");
493 		}
494 		
495 		this(cast(GVariant*) p);
496 	}
497 
498 	/**
499 	 * Creates a new byte #GVariant instance.
500 	 *
501 	 * Params:
502 	 *     value = a #guint8 value
503 	 *
504 	 * Returns: a floating reference to a new byte #GVariant instance
505 	 *
506 	 * Since: 2.24
507 	 *
508 	 * Throws: ConstructionException GTK+ fails to create the object.
509 	 */
510 	public this(char value)
511 	{
512 		auto p = g_variant_new_byte(value);
513 		
514 		if(p is null)
515 		{
516 			throw new ConstructionException("null returned by new_byte");
517 		}
518 		
519 		this(cast(GVariant*) p);
520 	}
521 
522 	/**
523 	 * Creates a new dictionary entry #GVariant. @key and @value must be
524 	 * non-%NULL. @key must be a value of a basic type (ie: not a container).
525 	 *
526 	 * If the @key or @value are floating references (see g_variant_ref_sink()),
527 	 * the new instance takes ownership of them as if via g_variant_ref_sink().
528 	 *
529 	 * Params:
530 	 *     key = a basic #GVariant, the key
531 	 *     value = a #GVariant, the value
532 	 *
533 	 * Returns: a floating reference to a new dictionary entry #GVariant
534 	 *
535 	 * Since: 2.24
536 	 *
537 	 * Throws: ConstructionException GTK+ fails to create the object.
538 	 */
539 	public this(Variant key, Variant value)
540 	{
541 		auto p = g_variant_new_dict_entry((key is null) ? null : key.getVariantStruct(), (value is null) ? null : value.getVariantStruct());
542 		
543 		if(p is null)
544 		{
545 			throw new ConstructionException("null returned by new_dict_entry");
546 		}
547 		
548 		this(cast(GVariant*) p);
549 	}
550 
551 	/**
552 	 * Creates a new double #GVariant instance.
553 	 *
554 	 * Params:
555 	 *     value = a #gdouble floating point value
556 	 *
557 	 * Returns: a floating reference to a new double #GVariant instance
558 	 *
559 	 * Since: 2.24
560 	 *
561 	 * Throws: ConstructionException GTK+ fails to create the object.
562 	 */
563 	public this(double value)
564 	{
565 		auto p = g_variant_new_double(value);
566 		
567 		if(p is null)
568 		{
569 			throw new ConstructionException("null returned by new_double");
570 		}
571 		
572 		this(cast(GVariant*) p);
573 	}
574 
575 	/**
576 	 * Provides access to the serialised data for an array of fixed-sized
577 	 * items.
578 	 *
579 	 * @value must be an array with fixed-sized elements.  Numeric types are
580 	 * fixed-size as are tuples containing only other fixed-sized types.
581 	 *
582 	 * @element_size must be the size of a single element in the array.
583 	 * For example, if calling this function for an array of 32-bit integers,
584 	 * you might say sizeof(gint32). This value isn't used except for the purpose
585 	 * of a double-check that the form of the serialised data matches the caller's
586 	 * expectation.
587 	 *
588 	 * @n_elements, which must be non-%NULL is set equal to the number of
589 	 * items in the array.
590 	 *
591 	 * Params:
592 	 *     elementType = the #GVariantType of each element
593 	 *     elements = a pointer to the fixed array of contiguous elements
594 	 *     nElements = the number of elements
595 	 *     elementSize = the size of each element
596 	 *
597 	 * Returns: a floating reference to a new array #GVariant instance
598 	 *
599 	 * Since: 2.32
600 	 *
601 	 * Throws: ConstructionException GTK+ fails to create the object.
602 	 */
603 	public this(VariantType elementType, void* elements, size_t nElements, size_t elementSize)
604 	{
605 		auto p = g_variant_new_fixed_array((elementType is null) ? null : elementType.getVariantTypeStruct(), elements, nElements, elementSize);
606 		
607 		if(p is null)
608 		{
609 			throw new ConstructionException("null returned by new_fixed_array");
610 		}
611 		
612 		this(cast(GVariant*) p);
613 	}
614 
615 	/**
616 	 * Constructs a new serialised-mode #GVariant instance.  This is the
617 	 * inner interface for creation of new serialised values that gets
618 	 * called from various functions in gvariant.c.
619 	 *
620 	 * A reference is taken on @bytes.
621 	 *
622 	 * Params:
623 	 *     type = a #GVariantType
624 	 *     bytes = a #GBytes
625 	 *     trusted = if the contents of @bytes are trusted
626 	 *
627 	 * Returns: a new #GVariant with a floating reference
628 	 *
629 	 * Since: 2.36
630 	 *
631 	 * Throws: ConstructionException GTK+ fails to create the object.
632 	 */
633 	public this(VariantType type, Bytes bytes, bool trusted)
634 	{
635 		auto p = g_variant_new_from_bytes((type is null) ? null : type.getVariantTypeStruct(), (bytes is null) ? null : bytes.getBytesStruct(), trusted);
636 		
637 		if(p is null)
638 		{
639 			throw new ConstructionException("null returned by new_from_bytes");
640 		}
641 		
642 		this(cast(GVariant*) p);
643 	}
644 
645 	/**
646 	 * Creates a new #GVariant instance from serialised data.
647 	 *
648 	 * @type is the type of #GVariant instance that will be constructed.
649 	 * The interpretation of @data depends on knowing the type.
650 	 *
651 	 * @data is not modified by this function and must remain valid with an
652 	 * unchanging value until such a time as @notify is called with
653 	 * @user_data.  If the contents of @data change before that time then
654 	 * the result is undefined.
655 	 *
656 	 * If @data is trusted to be serialised data in normal form then
657 	 * @trusted should be %TRUE.  This applies to serialised data created
658 	 * within this process or read from a trusted location on the disk (such
659 	 * as a file installed in /usr/lib alongside your application).  You
660 	 * should set trusted to %FALSE if @data is read from the network, a
661 	 * file in the user's home directory, etc.
662 	 *
663 	 * If @data was not stored in this machine's native endianness, any multi-byte
664 	 * numeric values in the returned variant will also be in non-native
665 	 * endianness. g_variant_byteswap() can be used to recover the original values.
666 	 *
667 	 * @notify will be called with @user_data when @data is no longer
668 	 * needed.  The exact time of this call is unspecified and might even be
669 	 * before this function returns.
670 	 *
671 	 * Params:
672 	 *     type = a definite #GVariantType
673 	 *     data = the serialised data
674 	 *     size = the size of @data
675 	 *     trusted = %TRUE if @data is definitely in normal form
676 	 *     notify = function to call when @data is no longer needed
677 	 *     userData = data for @notify
678 	 *
679 	 * Returns: a new floating #GVariant of type @type
680 	 *
681 	 * Since: 2.24
682 	 *
683 	 * Throws: ConstructionException GTK+ fails to create the object.
684 	 */
685 	public this(VariantType type, ubyte[] data, bool trusted, GDestroyNotify notify, void* userData)
686 	{
687 		auto p = g_variant_new_from_data((type is null) ? null : type.getVariantTypeStruct(), data.ptr, cast(size_t)data.length, trusted, notify, userData);
688 		
689 		if(p is null)
690 		{
691 			throw new ConstructionException("null returned by new_from_data");
692 		}
693 		
694 		this(cast(GVariant*) p);
695 	}
696 
697 	/**
698 	 * Creates a new int16 #GVariant instance.
699 	 *
700 	 * Params:
701 	 *     value = a #gint16 value
702 	 *
703 	 * Returns: a floating reference to a new int16 #GVariant instance
704 	 *
705 	 * Since: 2.24
706 	 *
707 	 * Throws: ConstructionException GTK+ fails to create the object.
708 	 */
709 	public this(short value)
710 	{
711 		auto p = g_variant_new_int16(value);
712 		
713 		if(p is null)
714 		{
715 			throw new ConstructionException("null returned by new_int16");
716 		}
717 		
718 		this(cast(GVariant*) p);
719 	}
720 
721 	/**
722 	 * Creates a new int32 #GVariant instance.
723 	 *
724 	 * Params:
725 	 *     value = a #gint32 value
726 	 *
727 	 * Returns: a floating reference to a new int32 #GVariant instance
728 	 *
729 	 * Since: 2.24
730 	 *
731 	 * Throws: ConstructionException GTK+ fails to create the object.
732 	 */
733 	public this(int value)
734 	{
735 		auto p = g_variant_new_int32(value);
736 		
737 		if(p is null)
738 		{
739 			throw new ConstructionException("null returned by new_int32");
740 		}
741 		
742 		this(cast(GVariant*) p);
743 	}
744 
745 	/**
746 	 * Creates a new int64 #GVariant instance.
747 	 *
748 	 * Params:
749 	 *     value = a #gint64 value
750 	 *
751 	 * Returns: a floating reference to a new int64 #GVariant instance
752 	 *
753 	 * Since: 2.24
754 	 *
755 	 * Throws: ConstructionException GTK+ fails to create the object.
756 	 */
757 	public this(long value)
758 	{
759 		auto p = g_variant_new_int64(value);
760 		
761 		if(p is null)
762 		{
763 			throw new ConstructionException("null returned by new_int64");
764 		}
765 		
766 		this(cast(GVariant*) p);
767 	}
768 
769 	/**
770 	 * Depending on if @child is %NULL, either wraps @child inside of a
771 	 * maybe container or creates a Nothing instance for the given @type.
772 	 *
773 	 * At least one of @child_type and @child must be non-%NULL.
774 	 * If @child_type is non-%NULL then it must be a definite type.
775 	 * If they are both non-%NULL then @child_type must be the type
776 	 * of @child.
777 	 *
778 	 * If @child is a floating reference (see g_variant_ref_sink()), the new
779 	 * instance takes ownership of @child.
780 	 *
781 	 * Params:
782 	 *     childType = the #GVariantType of the child, or %NULL
783 	 *     child = the child value, or %NULL
784 	 *
785 	 * Returns: a floating reference to a new #GVariant maybe instance
786 	 *
787 	 * Since: 2.24
788 	 *
789 	 * Throws: ConstructionException GTK+ fails to create the object.
790 	 */
791 	public this(VariantType childType, Variant child)
792 	{
793 		auto p = g_variant_new_maybe((childType is null) ? null : childType.getVariantTypeStruct(), (child is null) ? null : child.getVariantStruct());
794 		
795 		if(p is null)
796 		{
797 			throw new ConstructionException("null returned by new_maybe");
798 		}
799 		
800 		this(cast(GVariant*) p);
801 	}
802 
803 	/**
804 	 * Parses @format and returns the result.
805 	 *
806 	 * This is the version of g_variant_new_parsed() intended to be used
807 	 * from libraries.
808 	 *
809 	 * The return value will be floating if it was a newly created GVariant
810 	 * instance.  In the case that @format simply specified the collection
811 	 * of a #GVariant pointer (eg: @format was "%*") then the collected
812 	 * #GVariant pointer will be returned unmodified, without adding any
813 	 * additional references.
814 	 *
815 	 * Note that the arguments in @app must be of the correct width for their types
816 	 * specified in @format when collected into the #va_list. See
817 	 * the [GVariant varargs documentation][gvariant-varargs].
818 	 *
819 	 * In order to behave correctly in all cases it is necessary for the
820 	 * calling function to g_variant_ref_sink() the return result before
821 	 * returning control to the user that originally provided the pointer.
822 	 * At this point, the caller will have their own full reference to the
823 	 * result.  This can also be done by adding the result to a container,
824 	 * or by passing it to another g_variant_new() call.
825 	 *
826 	 * Params:
827 	 *     format = a text format #GVariant
828 	 *     app = a pointer to a #va_list
829 	 *
830 	 * Returns: a new, usually floating, #GVariant
831 	 *
832 	 * Throws: ConstructionException GTK+ fails to create the object.
833 	 */
834 	public this(string format, void** app)
835 	{
836 		auto p = g_variant_new_parsed_va(Str.toStringz(format), app);
837 		
838 		if(p is null)
839 		{
840 			throw new ConstructionException("null returned by new_parsed_va");
841 		}
842 		
843 		this(cast(GVariant*) p);
844 	}
845 
846 	/**
847 	 * Creates a string #GVariant with the contents of @string.
848 	 *
849 	 * @string must be valid UTF-8, and must not be %NULL. To encode
850 	 * potentially-%NULL strings, use g_variant_new() with `ms` as the
851 	 * [format string][gvariant-format-strings-maybe-types].
852 	 *
853 	 * Params:
854 	 *     str = a normal UTF-8 nul-terminated string
855 	 *
856 	 * Returns: a floating reference to a new string #GVariant instance
857 	 *
858 	 * Since: 2.24
859 	 *
860 	 * Throws: ConstructionException GTK+ fails to create the object.
861 	 */
862 	public this(string str)
863 	{
864 		auto p = g_variant_new_string(Str.toStringz(str));
865 		
866 		if(p is null)
867 		{
868 			throw new ConstructionException("null returned by new_string");
869 		}
870 		
871 		this(cast(GVariant*) p);
872 	}
873 
874 	/**
875 	 * Constructs an array of strings #GVariant from the given array of
876 	 * strings.
877 	 *
878 	 * If @length is -1 then @strv is %NULL-terminated.
879 	 *
880 	 * Params:
881 	 *     strv = an array of strings
882 	 *     length = the length of @strv, or -1
883 	 *
884 	 * Returns: a new floating #GVariant instance
885 	 *
886 	 * Since: 2.24
887 	 *
888 	 * Throws: ConstructionException GTK+ fails to create the object.
889 	 */
890 	public this(string[] strv)
891 	{
892 		auto p = g_variant_new_strv(Str.toStringzArray(strv), cast(ptrdiff_t)strv.length);
893 		
894 		if(p is null)
895 		{
896 			throw new ConstructionException("null returned by new_strv");
897 		}
898 		
899 		this(cast(GVariant*) p);
900 	}
901 
902 	/**
903 	 * Creates a new tuple #GVariant out of the items in @children.  The
904 	 * type is determined from the types of @children.  No entry in the
905 	 * @children array may be %NULL.
906 	 *
907 	 * If @n_children is 0 then the unit tuple is constructed.
908 	 *
909 	 * If the @children are floating references (see g_variant_ref_sink()), the
910 	 * new instance takes ownership of them as if via g_variant_ref_sink().
911 	 *
912 	 * Params:
913 	 *     children = the items to make the tuple out of
914 	 *     nChildren = the length of @children
915 	 *
916 	 * Returns: a floating reference to a new #GVariant tuple
917 	 *
918 	 * Since: 2.24
919 	 *
920 	 * Throws: ConstructionException GTK+ fails to create the object.
921 	 */
922 	public this(Variant[] children)
923 	{
924 		GVariant*[] childrenArray = new GVariant*[children.length];
925 		for ( int i = 0; i < children.length; i++ )
926 		{
927 			childrenArray[i] = children[i].getVariantStruct();
928 		}
929 		
930 		auto p = g_variant_new_tuple(childrenArray.ptr, cast(size_t)children.length);
931 		
932 		if(p is null)
933 		{
934 			throw new ConstructionException("null returned by new_tuple");
935 		}
936 		
937 		this(cast(GVariant*) p);
938 	}
939 
940 	/**
941 	 * Creates a new uint16 #GVariant instance.
942 	 *
943 	 * Params:
944 	 *     value = a #guint16 value
945 	 *
946 	 * Returns: a floating reference to a new uint16 #GVariant instance
947 	 *
948 	 * Since: 2.24
949 	 *
950 	 * Throws: ConstructionException GTK+ fails to create the object.
951 	 */
952 	public this(ushort value)
953 	{
954 		auto p = g_variant_new_uint16(value);
955 		
956 		if(p is null)
957 		{
958 			throw new ConstructionException("null returned by new_uint16");
959 		}
960 		
961 		this(cast(GVariant*) p);
962 	}
963 
964 	/**
965 	 * Creates a new uint32 #GVariant instance.
966 	 *
967 	 * Params:
968 	 *     value = a #guint32 value
969 	 *
970 	 * Returns: a floating reference to a new uint32 #GVariant instance
971 	 *
972 	 * Since: 2.24
973 	 *
974 	 * Throws: ConstructionException GTK+ fails to create the object.
975 	 */
976 	public this(uint value)
977 	{
978 		auto p = g_variant_new_uint32(value);
979 		
980 		if(p is null)
981 		{
982 			throw new ConstructionException("null returned by new_uint32");
983 		}
984 		
985 		this(cast(GVariant*) p);
986 	}
987 
988 	/**
989 	 * Creates a new uint64 #GVariant instance.
990 	 *
991 	 * Params:
992 	 *     value = a #guint64 value
993 	 *
994 	 * Returns: a floating reference to a new uint64 #GVariant instance
995 	 *
996 	 * Since: 2.24
997 	 *
998 	 * Throws: ConstructionException GTK+ fails to create the object.
999 	 */
1000 	public this(ulong value)
1001 	{
1002 		auto p = g_variant_new_uint64(value);
1003 		
1004 		if(p is null)
1005 		{
1006 			throw new ConstructionException("null returned by new_uint64");
1007 		}
1008 		
1009 		this(cast(GVariant*) p);
1010 	}
1011 
1012 	/**
1013 	 * This function is intended to be used by libraries based on
1014 	 * #GVariant that want to provide g_variant_new()-like functionality
1015 	 * to their users.
1016 	 *
1017 	 * The API is more general than g_variant_new() to allow a wider range
1018 	 * of possible uses.
1019 	 *
1020 	 * @format_string must still point to a valid format string, but it only
1021 	 * needs to be nul-terminated if @endptr is %NULL.  If @endptr is
1022 	 * non-%NULL then it is updated to point to the first character past the
1023 	 * end of the format string.
1024 	 *
1025 	 * @app is a pointer to a #va_list.  The arguments, according to
1026 	 * @format_string, are collected from this #va_list and the list is left
1027 	 * pointing to the argument following the last.
1028 	 *
1029 	 * Note that the arguments in @app must be of the correct width for their
1030 	 * types specified in @format_string when collected into the #va_list.
1031 	 * See the [GVariant varargs documentation][gvariant-varargs.
1032 	 *
1033 	 * These two generalisations allow mixing of multiple calls to
1034 	 * g_variant_new_va() and g_variant_get_va() within a single actual
1035 	 * varargs call by the user.
1036 	 *
1037 	 * The return value will be floating if it was a newly created GVariant
1038 	 * instance (for example, if the format string was "(ii)").  In the case
1039 	 * that the format_string was '*', '?', 'r', or a format starting with
1040 	 * '@' then the collected #GVariant pointer will be returned unmodified,
1041 	 * without adding any additional references.
1042 	 *
1043 	 * In order to behave correctly in all cases it is necessary for the
1044 	 * calling function to g_variant_ref_sink() the return result before
1045 	 * returning control to the user that originally provided the pointer.
1046 	 * At this point, the caller will have their own full reference to the
1047 	 * result.  This can also be done by adding the result to a container,
1048 	 * or by passing it to another g_variant_new() call.
1049 	 *
1050 	 * Params:
1051 	 *     formatString = a string that is prefixed with a format string
1052 	 *     endptr = location to store the end pointer,
1053 	 *         or %NULL
1054 	 *     app = a pointer to a #va_list
1055 	 *
1056 	 * Returns: a new, usually floating, #GVariant
1057 	 *
1058 	 * Since: 2.24
1059 	 *
1060 	 * Throws: ConstructionException GTK+ fails to create the object.
1061 	 */
1062 	public this(string formatString, string[] endptr, void** app)
1063 	{
1064 		auto p = g_variant_new_va(Str.toStringz(formatString), Str.toStringzArray(endptr), app);
1065 		
1066 		if(p is null)
1067 		{
1068 			throw new ConstructionException("null returned by new_va");
1069 		}
1070 		
1071 		this(cast(GVariant*) p);
1072 	}
1073 
1074 	/**
1075 	 * Boxes @value.  The result is a #GVariant instance representing a
1076 	 * variant containing the original value.
1077 	 *
1078 	 * If @child is a floating reference (see g_variant_ref_sink()), the new
1079 	 * instance takes ownership of @child.
1080 	 *
1081 	 * Params:
1082 	 *     value = a #GVariant instance
1083 	 *
1084 	 * Returns: a floating reference to a new variant #GVariant instance
1085 	 *
1086 	 * Since: 2.24
1087 	 *
1088 	 * Throws: ConstructionException GTK+ fails to create the object.
1089 	 */
1090 	public this(Variant value)
1091 	{
1092 		auto p = g_variant_new_variant((value is null) ? null : value.getVariantStruct());
1093 		
1094 		if(p is null)
1095 		{
1096 			throw new ConstructionException("null returned by new_variant");
1097 		}
1098 		
1099 		this(cast(GVariant*) p);
1100 	}
1101 
1102 	/**
1103 	 * Performs a byteswapping operation on the contents of @value.  The
1104 	 * result is that all multi-byte numeric data contained in @value is
1105 	 * byteswapped.  That includes 16, 32, and 64bit signed and unsigned
1106 	 * integers as well as file handles and double precision floating point
1107 	 * values.
1108 	 *
1109 	 * This function is an identity mapping on any value that does not
1110 	 * contain multi-byte numeric data.  That include strings, booleans,
1111 	 * bytes and containers containing only these things (recursively).
1112 	 *
1113 	 * The returned value is always in normal form and is marked as trusted.
1114 	 *
1115 	 * Returns: the byteswapped form of @value
1116 	 *
1117 	 * Since: 2.24
1118 	 */
1119 	public Variant byteswap()
1120 	{
1121 		auto p = g_variant_byteswap(gVariant);
1122 		
1123 		if(p is null)
1124 		{
1125 			return null;
1126 		}
1127 		
1128 		return new Variant(cast(GVariant*) p, true);
1129 	}
1130 
1131 	/**
1132 	 * Checks if calling g_variant_get() with @format_string on @value would
1133 	 * be valid from a type-compatibility standpoint.  @format_string is
1134 	 * assumed to be a valid format string (from a syntactic standpoint).
1135 	 *
1136 	 * If @copy_only is %TRUE then this function additionally checks that it
1137 	 * would be safe to call g_variant_unref() on @value immediately after
1138 	 * the call to g_variant_get() without invalidating the result.  This is
1139 	 * only possible if deep copies are made (ie: there are no pointers to
1140 	 * the data inside of the soon-to-be-freed #GVariant instance).  If this
1141 	 * check fails then a g_critical() is printed and %FALSE is returned.
1142 	 *
1143 	 * This function is meant to be used by functions that wish to provide
1144 	 * varargs accessors to #GVariant values of uncertain values (eg:
1145 	 * g_variant_lookup() or g_menu_model_get_item_attribute()).
1146 	 *
1147 	 * Params:
1148 	 *     formatString = a valid #GVariant format string
1149 	 *     copyOnly = %TRUE to ensure the format string makes deep copies
1150 	 *
1151 	 * Returns: %TRUE if @format_string is safe to use
1152 	 *
1153 	 * Since: 2.34
1154 	 */
1155 	public bool checkFormatString(string formatString, bool copyOnly)
1156 	{
1157 		return g_variant_check_format_string(gVariant, Str.toStringz(formatString), copyOnly) != 0;
1158 	}
1159 
1160 	/**
1161 	 * Classifies @value according to its top-level type.
1162 	 *
1163 	 * Returns: the #GVariantClass of @value
1164 	 *
1165 	 * Since: 2.24
1166 	 */
1167 	public GVariantClass classify()
1168 	{
1169 		return g_variant_classify(gVariant);
1170 	}
1171 
1172 	/**
1173 	 * Compares @one and @two.
1174 	 *
1175 	 * The types of @one and @two are #gconstpointer only to allow use of
1176 	 * this function with #GTree, #GPtrArray, etc.  They must each be a
1177 	 * #GVariant.
1178 	 *
1179 	 * Comparison is only defined for basic types (ie: booleans, numbers,
1180 	 * strings).  For booleans, %FALSE is less than %TRUE.  Numbers are
1181 	 * ordered in the usual way.  Strings are in ASCII lexographical order.
1182 	 *
1183 	 * It is a programmer error to attempt to compare container values or
1184 	 * two values that have types that are not exactly equal.  For example,
1185 	 * you cannot compare a 32-bit signed integer with a 32-bit unsigned
1186 	 * integer.  Also note that this function is not particularly
1187 	 * well-behaved when it comes to comparison of doubles; in particular,
1188 	 * the handling of incomparable values (ie: NaN) is undefined.
1189 	 *
1190 	 * If you only require an equality comparison, g_variant_equal() is more
1191 	 * general.
1192 	 *
1193 	 * Params:
1194 	 *     two = a #GVariant instance of the same type
1195 	 *
1196 	 * Returns: negative value if a < b;
1197 	 *     zero if a = b;
1198 	 *     positive value if a > b.
1199 	 *
1200 	 * Since: 2.26
1201 	 */
1202 	public int compare(Variant two)
1203 	{
1204 		return g_variant_compare(gVariant, (two is null) ? null : two.getVariantStruct());
1205 	}
1206 
1207 	/**
1208 	 * Similar to g_variant_get_bytestring() except that instead of
1209 	 * returning a constant string, the string is duplicated.
1210 	 *
1211 	 * The return value must be freed using g_free().
1212 	 *
1213 	 * Returns: a newly allocated string
1214 	 *
1215 	 * Since: 2.26
1216 	 */
1217 	public string dupBytestring()
1218 	{
1219 		size_t length;
1220 		
1221 		auto retStr = g_variant_dup_bytestring(gVariant, &length);
1222 		
1223 		scope(exit) Str.freeString(retStr);
1224 		return Str.toString(retStr, length);
1225 	}
1226 
1227 	/**
1228 	 * Gets the contents of an array of array of bytes #GVariant.  This call
1229 	 * makes a deep copy; the return result should be released with
1230 	 * g_strfreev().
1231 	 *
1232 	 * If @length is non-%NULL then the number of elements in the result is
1233 	 * stored there.  In any case, the resulting array will be
1234 	 * %NULL-terminated.
1235 	 *
1236 	 * For an empty array, @length will be set to 0 and a pointer to a
1237 	 * %NULL pointer will be returned.
1238 	 *
1239 	 * Returns: an array of strings
1240 	 *
1241 	 * Since: 2.26
1242 	 */
1243 	public string[] dupBytestringArray()
1244 	{
1245 		size_t length;
1246 		
1247 		auto retStr = g_variant_dup_bytestring_array(gVariant, &length);
1248 		
1249 		scope(exit) Str.freeStringArray(retStr);
1250 		return Str.toStringArray(retStr, length);
1251 	}
1252 
1253 	/**
1254 	 * Gets the contents of an array of object paths #GVariant.  This call
1255 	 * makes a deep copy; the return result should be released with
1256 	 * g_strfreev().
1257 	 *
1258 	 * If @length is non-%NULL then the number of elements in the result
1259 	 * is stored there.  In any case, the resulting array will be
1260 	 * %NULL-terminated.
1261 	 *
1262 	 * For an empty array, @length will be set to 0 and a pointer to a
1263 	 * %NULL pointer will be returned.
1264 	 *
1265 	 * Returns: an array of strings
1266 	 *
1267 	 * Since: 2.30
1268 	 */
1269 	public string[] dupObjv()
1270 	{
1271 		size_t length;
1272 		
1273 		auto retStr = g_variant_dup_objv(gVariant, &length);
1274 		
1275 		scope(exit) Str.freeStringArray(retStr);
1276 		return Str.toStringArray(retStr, length);
1277 	}
1278 
1279 	/**
1280 	 * Similar to g_variant_get_string() except that instead of returning
1281 	 * a constant string, the string is duplicated.
1282 	 *
1283 	 * The string will always be UTF-8 encoded.
1284 	 *
1285 	 * The return value must be freed using g_free().
1286 	 *
1287 	 * Params:
1288 	 *     length = a pointer to a #gsize, to store the length
1289 	 *
1290 	 * Returns: a newly allocated string, UTF-8 encoded
1291 	 *
1292 	 * Since: 2.24
1293 	 */
1294 	public string dupString(out size_t length)
1295 	{
1296 		auto retStr = g_variant_dup_string(gVariant, &length);
1297 		
1298 		scope(exit) Str.freeString(retStr);
1299 		return Str.toString(retStr);
1300 	}
1301 
1302 	/**
1303 	 * Gets the contents of an array of strings #GVariant.  This call
1304 	 * makes a deep copy; the return result should be released with
1305 	 * g_strfreev().
1306 	 *
1307 	 * If @length is non-%NULL then the number of elements in the result
1308 	 * is stored there.  In any case, the resulting array will be
1309 	 * %NULL-terminated.
1310 	 *
1311 	 * For an empty array, @length will be set to 0 and a pointer to a
1312 	 * %NULL pointer will be returned.
1313 	 *
1314 	 * Returns: an array of strings
1315 	 *
1316 	 * Since: 2.24
1317 	 */
1318 	public string[] dupStrv()
1319 	{
1320 		size_t length;
1321 		
1322 		auto retStr = g_variant_dup_strv(gVariant, &length);
1323 		
1324 		scope(exit) Str.freeStringArray(retStr);
1325 		return Str.toStringArray(retStr, length);
1326 	}
1327 
1328 	/**
1329 	 * Checks if @one and @two have the same type and value.
1330 	 *
1331 	 * The types of @one and @two are #gconstpointer only to allow use of
1332 	 * this function with #GHashTable.  They must each be a #GVariant.
1333 	 *
1334 	 * Params:
1335 	 *     two = a #GVariant instance
1336 	 *
1337 	 * Returns: %TRUE if @one and @two are equal
1338 	 *
1339 	 * Since: 2.24
1340 	 */
1341 	public bool equal(Variant two)
1342 	{
1343 		return g_variant_equal(gVariant, (two is null) ? null : two.getVariantStruct()) != 0;
1344 	}
1345 
1346 	/**
1347 	 * Returns the boolean value of @value.
1348 	 *
1349 	 * It is an error to call this function with a @value of any type
1350 	 * other than %G_VARIANT_TYPE_BOOLEAN.
1351 	 *
1352 	 * Returns: %TRUE or %FALSE
1353 	 *
1354 	 * Since: 2.24
1355 	 */
1356 	public bool getBoolean()
1357 	{
1358 		return g_variant_get_boolean(gVariant) != 0;
1359 	}
1360 
1361 	/**
1362 	 * Returns the byte value of @value.
1363 	 *
1364 	 * It is an error to call this function with a @value of any type
1365 	 * other than %G_VARIANT_TYPE_BYTE.
1366 	 *
1367 	 * Returns: a #guchar
1368 	 *
1369 	 * Since: 2.24
1370 	 */
1371 	public char getByte()
1372 	{
1373 		return g_variant_get_byte(gVariant);
1374 	}
1375 
1376 	/**
1377 	 * Returns the string value of a #GVariant instance with an
1378 	 * array-of-bytes type.  The string has no particular encoding.
1379 	 *
1380 	 * If the array does not end with a nul terminator character, the empty
1381 	 * string is returned.  For this reason, you can always trust that a
1382 	 * non-%NULL nul-terminated string will be returned by this function.
1383 	 *
1384 	 * If the array contains a nul terminator character somewhere other than
1385 	 * the last byte then the returned string is the string, up to the first
1386 	 * such nul character.
1387 	 *
1388 	 * g_variant_get_fixed_array() should be used instead if the array contains
1389 	 * arbitrary data that could not be nul-terminated or could contain nul bytes.
1390 	 *
1391 	 * It is an error to call this function with a @value that is not an
1392 	 * array of bytes.
1393 	 *
1394 	 * The return value remains valid as long as @value exists.
1395 	 *
1396 	 * Returns: the constant string
1397 	 *
1398 	 * Since: 2.26
1399 	 */
1400 	public string getBytestring()
1401 	{
1402 		return Str.toString(g_variant_get_bytestring(gVariant));
1403 	}
1404 
1405 	/**
1406 	 * Gets the contents of an array of array of bytes #GVariant.  This call
1407 	 * makes a shallow copy; the return result should be released with
1408 	 * g_free(), but the individual strings must not be modified.
1409 	 *
1410 	 * If @length is non-%NULL then the number of elements in the result is
1411 	 * stored there.  In any case, the resulting array will be
1412 	 * %NULL-terminated.
1413 	 *
1414 	 * For an empty array, @length will be set to 0 and a pointer to a
1415 	 * %NULL pointer will be returned.
1416 	 *
1417 	 * Returns: an array of constant strings
1418 	 *
1419 	 * Since: 2.26
1420 	 */
1421 	public string[] getBytestringArray()
1422 	{
1423 		size_t length;
1424 		
1425 		return Str.toStringArray(g_variant_get_bytestring_array(gVariant, &length));
1426 	}
1427 
1428 	/**
1429 	 * Reads a child item out of a container #GVariant instance.  This
1430 	 * includes variants, maybes, arrays, tuples and dictionary
1431 	 * entries.  It is an error to call this function on any other type of
1432 	 * #GVariant.
1433 	 *
1434 	 * It is an error if @index_ is greater than the number of child items
1435 	 * in the container.  See g_variant_n_children().
1436 	 *
1437 	 * The returned value is never floating.  You should free it with
1438 	 * g_variant_unref() when you're done with it.
1439 	 *
1440 	 * This function is O(1).
1441 	 *
1442 	 * Params:
1443 	 *     index = the index of the child to fetch
1444 	 *
1445 	 * Returns: the child at the specified index
1446 	 *
1447 	 * Since: 2.24
1448 	 */
1449 	public Variant getChildValue(size_t index)
1450 	{
1451 		auto p = g_variant_get_child_value(gVariant, index);
1452 		
1453 		if(p is null)
1454 		{
1455 			return null;
1456 		}
1457 		
1458 		return new Variant(cast(GVariant*) p, true);
1459 	}
1460 
1461 	/**
1462 	 * Returns a pointer to the serialised form of a #GVariant instance.
1463 	 * The returned data may not be in fully-normalised form if read from an
1464 	 * untrusted source.  The returned data must not be freed; it remains
1465 	 * valid for as long as @value exists.
1466 	 *
1467 	 * If @value is a fixed-sized value that was deserialised from a
1468 	 * corrupted serialised container then %NULL may be returned.  In this
1469 	 * case, the proper thing to do is typically to use the appropriate
1470 	 * number of nul bytes in place of @value.  If @value is not fixed-sized
1471 	 * then %NULL is never returned.
1472 	 *
1473 	 * In the case that @value is already in serialised form, this function
1474 	 * is O(1).  If the value is not already in serialised form,
1475 	 * serialisation occurs implicitly and is approximately O(n) in the size
1476 	 * of the result.
1477 	 *
1478 	 * To deserialise the data returned by this function, in addition to the
1479 	 * serialised data, you must know the type of the #GVariant, and (if the
1480 	 * machine might be different) the endianness of the machine that stored
1481 	 * it. As a result, file formats or network messages that incorporate
1482 	 * serialised #GVariants must include this information either
1483 	 * implicitly (for instance "the file always contains a
1484 	 * %G_VARIANT_TYPE_VARIANT and it is always in little-endian order") or
1485 	 * explicitly (by storing the type and/or endianness in addition to the
1486 	 * serialised data).
1487 	 *
1488 	 * Returns: the serialised form of @value, or %NULL
1489 	 *
1490 	 * Since: 2.24
1491 	 */
1492 	public void* getData()
1493 	{
1494 		return g_variant_get_data(gVariant);
1495 	}
1496 
1497 	/**
1498 	 * Returns a pointer to the serialised form of a #GVariant instance.
1499 	 * The semantics of this function are exactly the same as
1500 	 * g_variant_get_data(), except that the returned #GBytes holds
1501 	 * a reference to the variant data.
1502 	 *
1503 	 * Returns: A new #GBytes representing the variant data
1504 	 *
1505 	 * Since: 2.36
1506 	 */
1507 	public Bytes getDataAsBytes()
1508 	{
1509 		auto p = g_variant_get_data_as_bytes(gVariant);
1510 		
1511 		if(p is null)
1512 		{
1513 			return null;
1514 		}
1515 		
1516 		return new Bytes(cast(GBytes*) p, true);
1517 	}
1518 
1519 	/**
1520 	 * Returns the double precision floating point value of @value.
1521 	 *
1522 	 * It is an error to call this function with a @value of any type
1523 	 * other than %G_VARIANT_TYPE_DOUBLE.
1524 	 *
1525 	 * Returns: a #gdouble
1526 	 *
1527 	 * Since: 2.24
1528 	 */
1529 	public double getDouble()
1530 	{
1531 		return g_variant_get_double(gVariant);
1532 	}
1533 
1534 	/**
1535 	 * Provides access to the serialised data for an array of fixed-sized
1536 	 * items.
1537 	 *
1538 	 * @value must be an array with fixed-sized elements.  Numeric types are
1539 	 * fixed-size, as are tuples containing only other fixed-sized types.
1540 	 *
1541 	 * @element_size must be the size of a single element in the array,
1542 	 * as given by the section on
1543 	 * [serialized data memory][gvariant-serialised-data-memory].
1544 	 *
1545 	 * In particular, arrays of these fixed-sized types can be interpreted
1546 	 * as an array of the given C type, with @element_size set to the size
1547 	 * the appropriate type:
1548 	 * - %G_VARIANT_TYPE_INT16 (etc.): #gint16 (etc.)
1549 	 * - %G_VARIANT_TYPE_BOOLEAN: #guchar (not #gboolean!)
1550 	 * - %G_VARIANT_TYPE_BYTE: #guchar
1551 	 * - %G_VARIANT_TYPE_HANDLE: #guint32
1552 	 * - %G_VARIANT_TYPE_DOUBLE: #gdouble
1553 	 *
1554 	 * For example, if calling this function for an array of 32-bit integers,
1555 	 * you might say `sizeof(gint32)`. This value isn't used except for the purpose
1556 	 * of a double-check that the form of the serialised data matches the caller's
1557 	 * expectation.
1558 	 *
1559 	 * @n_elements, which must be non-%NULL, is set equal to the number of
1560 	 * items in the array.
1561 	 *
1562 	 * Params:
1563 	 *     elementSize = the size of each element
1564 	 *
1565 	 * Returns: a pointer to
1566 	 *     the fixed array
1567 	 *
1568 	 * Since: 2.24
1569 	 */
1570 	public void[] getFixedArray(size_t elementSize)
1571 	{
1572 		size_t nElements;
1573 		
1574 		auto p = g_variant_get_fixed_array(gVariant, &nElements, elementSize);
1575 		
1576 		return p[0 .. nElements];
1577 	}
1578 
1579 	/**
1580 	 * Returns the 32-bit signed integer value of @value.
1581 	 *
1582 	 * It is an error to call this function with a @value of any type other
1583 	 * than %G_VARIANT_TYPE_HANDLE.
1584 	 *
1585 	 * By convention, handles are indexes into an array of file descriptors
1586 	 * that are sent alongside a D-Bus message.  If you're not interacting
1587 	 * with D-Bus, you probably don't need them.
1588 	 *
1589 	 * Returns: a #gint32
1590 	 *
1591 	 * Since: 2.24
1592 	 */
1593 	public int getHandle()
1594 	{
1595 		return g_variant_get_handle(gVariant);
1596 	}
1597 
1598 	/**
1599 	 * Returns the 16-bit signed integer value of @value.
1600 	 *
1601 	 * It is an error to call this function with a @value of any type
1602 	 * other than %G_VARIANT_TYPE_INT16.
1603 	 *
1604 	 * Returns: a #gint16
1605 	 *
1606 	 * Since: 2.24
1607 	 */
1608 	public short getInt16()
1609 	{
1610 		return g_variant_get_int16(gVariant);
1611 	}
1612 
1613 	/**
1614 	 * Returns the 32-bit signed integer value of @value.
1615 	 *
1616 	 * It is an error to call this function with a @value of any type
1617 	 * other than %G_VARIANT_TYPE_INT32.
1618 	 *
1619 	 * Returns: a #gint32
1620 	 *
1621 	 * Since: 2.24
1622 	 */
1623 	public int getInt32()
1624 	{
1625 		return g_variant_get_int32(gVariant);
1626 	}
1627 
1628 	/**
1629 	 * Returns the 64-bit signed integer value of @value.
1630 	 *
1631 	 * It is an error to call this function with a @value of any type
1632 	 * other than %G_VARIANT_TYPE_INT64.
1633 	 *
1634 	 * Returns: a #gint64
1635 	 *
1636 	 * Since: 2.24
1637 	 */
1638 	public long getInt64()
1639 	{
1640 		return g_variant_get_int64(gVariant);
1641 	}
1642 
1643 	/**
1644 	 * Given a maybe-typed #GVariant instance, extract its value.  If the
1645 	 * value is Nothing, then this function returns %NULL.
1646 	 *
1647 	 * Returns: the contents of @value, or %NULL
1648 	 *
1649 	 * Since: 2.24
1650 	 */
1651 	public Variant getMaybe()
1652 	{
1653 		auto p = g_variant_get_maybe(gVariant);
1654 		
1655 		if(p is null)
1656 		{
1657 			return null;
1658 		}
1659 		
1660 		return new Variant(cast(GVariant*) p, true);
1661 	}
1662 
1663 	/**
1664 	 * Gets a #GVariant instance that has the same value as @value and is
1665 	 * trusted to be in normal form.
1666 	 *
1667 	 * If @value is already trusted to be in normal form then a new
1668 	 * reference to @value is returned.
1669 	 *
1670 	 * If @value is not already trusted, then it is scanned to check if it
1671 	 * is in normal form.  If it is found to be in normal form then it is
1672 	 * marked as trusted and a new reference to it is returned.
1673 	 *
1674 	 * If @value is found not to be in normal form then a new trusted
1675 	 * #GVariant is created with the same value as @value.
1676 	 *
1677 	 * It makes sense to call this function if you've received #GVariant
1678 	 * data from untrusted sources and you want to ensure your serialised
1679 	 * output is definitely in normal form.
1680 	 *
1681 	 * Returns: a trusted #GVariant
1682 	 *
1683 	 * Since: 2.24
1684 	 */
1685 	public Variant getNormalForm()
1686 	{
1687 		auto p = g_variant_get_normal_form(gVariant);
1688 		
1689 		if(p is null)
1690 		{
1691 			return null;
1692 		}
1693 		
1694 		return new Variant(cast(GVariant*) p, true);
1695 	}
1696 
1697 	/**
1698 	 * Gets the contents of an array of object paths #GVariant.  This call
1699 	 * makes a shallow copy; the return result should be released with
1700 	 * g_free(), but the individual strings must not be modified.
1701 	 *
1702 	 * If @length is non-%NULL then the number of elements in the result
1703 	 * is stored there.  In any case, the resulting array will be
1704 	 * %NULL-terminated.
1705 	 *
1706 	 * For an empty array, @length will be set to 0 and a pointer to a
1707 	 * %NULL pointer will be returned.
1708 	 *
1709 	 * Returns: an array of constant strings
1710 	 *
1711 	 * Since: 2.30
1712 	 */
1713 	public string[] getObjv()
1714 	{
1715 		size_t length;
1716 		
1717 		return Str.toStringArray(g_variant_get_objv(gVariant, &length));
1718 	}
1719 
1720 	/**
1721 	 * Determines the number of bytes that would be required to store @value
1722 	 * with g_variant_store().
1723 	 *
1724 	 * If @value has a fixed-sized type then this function always returned
1725 	 * that fixed size.
1726 	 *
1727 	 * In the case that @value is already in serialised form or the size has
1728 	 * already been calculated (ie: this function has been called before)
1729 	 * then this function is O(1).  Otherwise, the size is calculated, an
1730 	 * operation which is approximately O(n) in the number of values
1731 	 * involved.
1732 	 *
1733 	 * Returns: the serialised size of @value
1734 	 *
1735 	 * Since: 2.24
1736 	 */
1737 	public size_t getSize()
1738 	{
1739 		return g_variant_get_size(gVariant);
1740 	}
1741 
1742 	/**
1743 	 * Returns the string value of a #GVariant instance with a string
1744 	 * type.  This includes the types %G_VARIANT_TYPE_STRING,
1745 	 * %G_VARIANT_TYPE_OBJECT_PATH and %G_VARIANT_TYPE_SIGNATURE.
1746 	 *
1747 	 * The string will always be UTF-8 encoded, and will never be %NULL.
1748 	 *
1749 	 * If @length is non-%NULL then the length of the string (in bytes) is
1750 	 * returned there.  For trusted values, this information is already
1751 	 * known.  For untrusted values, a strlen() will be performed.
1752 	 *
1753 	 * It is an error to call this function with a @value of any type
1754 	 * other than those three.
1755 	 *
1756 	 * The return value remains valid as long as @value exists.
1757 	 *
1758 	 * Params:
1759 	 *     length = a pointer to a #gsize,
1760 	 *         to store the length
1761 	 *
1762 	 * Returns: the constant string, UTF-8 encoded
1763 	 *
1764 	 * Since: 2.24
1765 	 */
1766 	public string getString(out size_t length)
1767 	{
1768 		return Str.toString(g_variant_get_string(gVariant, &length));
1769 	}
1770 
1771 	/**
1772 	 * Gets the contents of an array of strings #GVariant.  This call
1773 	 * makes a shallow copy; the return result should be released with
1774 	 * g_free(), but the individual strings must not be modified.
1775 	 *
1776 	 * If @length is non-%NULL then the number of elements in the result
1777 	 * is stored there.  In any case, the resulting array will be
1778 	 * %NULL-terminated.
1779 	 *
1780 	 * For an empty array, @length will be set to 0 and a pointer to a
1781 	 * %NULL pointer will be returned.
1782 	 *
1783 	 * Returns: an array of constant strings
1784 	 *
1785 	 * Since: 2.24
1786 	 */
1787 	public string[] getStrv()
1788 	{
1789 		size_t length;
1790 		
1791 		return Str.toStringArray(g_variant_get_strv(gVariant, &length));
1792 	}
1793 
1794 	/**
1795 	 * Determines the type of @value.
1796 	 *
1797 	 * The return value is valid for the lifetime of @value and must not
1798 	 * be freed.
1799 	 *
1800 	 * Returns: a #GVariantType
1801 	 *
1802 	 * Since: 2.24
1803 	 */
1804 	public VariantType getType()
1805 	{
1806 		auto p = g_variant_get_type(gVariant);
1807 		
1808 		if(p is null)
1809 		{
1810 			return null;
1811 		}
1812 		
1813 		return new VariantType(cast(GVariantType*) p);
1814 	}
1815 
1816 	/**
1817 	 * Returns the type string of @value.  Unlike the result of calling
1818 	 * g_variant_type_peek_string(), this string is nul-terminated.  This
1819 	 * string belongs to #GVariant and must not be freed.
1820 	 *
1821 	 * Returns: the type string for the type of @value
1822 	 *
1823 	 * Since: 2.24
1824 	 */
1825 	public string getTypeString()
1826 	{
1827 		return Str.toString(g_variant_get_type_string(gVariant));
1828 	}
1829 
1830 	/**
1831 	 * Returns the 16-bit unsigned integer value of @value.
1832 	 *
1833 	 * It is an error to call this function with a @value of any type
1834 	 * other than %G_VARIANT_TYPE_UINT16.
1835 	 *
1836 	 * Returns: a #guint16
1837 	 *
1838 	 * Since: 2.24
1839 	 */
1840 	public ushort getUint16()
1841 	{
1842 		return g_variant_get_uint16(gVariant);
1843 	}
1844 
1845 	/**
1846 	 * Returns the 32-bit unsigned integer value of @value.
1847 	 *
1848 	 * It is an error to call this function with a @value of any type
1849 	 * other than %G_VARIANT_TYPE_UINT32.
1850 	 *
1851 	 * Returns: a #guint32
1852 	 *
1853 	 * Since: 2.24
1854 	 */
1855 	public uint getUint32()
1856 	{
1857 		return g_variant_get_uint32(gVariant);
1858 	}
1859 
1860 	/**
1861 	 * Returns the 64-bit unsigned integer value of @value.
1862 	 *
1863 	 * It is an error to call this function with a @value of any type
1864 	 * other than %G_VARIANT_TYPE_UINT64.
1865 	 *
1866 	 * Returns: a #guint64
1867 	 *
1868 	 * Since: 2.24
1869 	 */
1870 	public ulong getUint64()
1871 	{
1872 		return g_variant_get_uint64(gVariant);
1873 	}
1874 
1875 	/**
1876 	 * This function is intended to be used by libraries based on #GVariant
1877 	 * that want to provide g_variant_get()-like functionality to their
1878 	 * users.
1879 	 *
1880 	 * The API is more general than g_variant_get() to allow a wider range
1881 	 * of possible uses.
1882 	 *
1883 	 * @format_string must still point to a valid format string, but it only
1884 	 * need to be nul-terminated if @endptr is %NULL.  If @endptr is
1885 	 * non-%NULL then it is updated to point to the first character past the
1886 	 * end of the format string.
1887 	 *
1888 	 * @app is a pointer to a #va_list.  The arguments, according to
1889 	 * @format_string, are collected from this #va_list and the list is left
1890 	 * pointing to the argument following the last.
1891 	 *
1892 	 * These two generalisations allow mixing of multiple calls to
1893 	 * g_variant_new_va() and g_variant_get_va() within a single actual
1894 	 * varargs call by the user.
1895 	 *
1896 	 * @format_string determines the C types that are used for unpacking
1897 	 * the values and also determines if the values are copied or borrowed,
1898 	 * see the section on
1899 	 * [GVariant format strings][gvariant-format-strings-pointers].
1900 	 *
1901 	 * Params:
1902 	 *     formatString = a string that is prefixed with a format string
1903 	 *     endptr = location to store the end pointer,
1904 	 *         or %NULL
1905 	 *     app = a pointer to a #va_list
1906 	 *
1907 	 * Since: 2.24
1908 	 */
1909 	public void getVa(string formatString, string[] endptr, void** app)
1910 	{
1911 		g_variant_get_va(gVariant, Str.toStringz(formatString), Str.toStringzArray(endptr), app);
1912 	}
1913 
1914 	/**
1915 	 * Unboxes @value.  The result is the #GVariant instance that was
1916 	 * contained in @value.
1917 	 *
1918 	 * Returns: the item contained in the variant
1919 	 *
1920 	 * Since: 2.24
1921 	 */
1922 	public Variant getVariant()
1923 	{
1924 		auto p = g_variant_get_variant(gVariant);
1925 		
1926 		if(p is null)
1927 		{
1928 			return null;
1929 		}
1930 		
1931 		return new Variant(cast(GVariant*) p, true);
1932 	}
1933 
1934 	/**
1935 	 * Generates a hash value for a #GVariant instance.
1936 	 *
1937 	 * The output of this function is guaranteed to be the same for a given
1938 	 * value only per-process.  It may change between different processor
1939 	 * architectures or even different versions of GLib.  Do not use this
1940 	 * function as a basis for building protocols or file formats.
1941 	 *
1942 	 * The type of @value is #gconstpointer only to allow use of this
1943 	 * function with #GHashTable.  @value must be a #GVariant.
1944 	 *
1945 	 * Returns: a hash value corresponding to @value
1946 	 *
1947 	 * Since: 2.24
1948 	 */
1949 	public uint hash()
1950 	{
1951 		return g_variant_hash(gVariant);
1952 	}
1953 
1954 	/**
1955 	 * Checks if @value is a container.
1956 	 *
1957 	 * Returns: %TRUE if @value is a container
1958 	 *
1959 	 * Since: 2.24
1960 	 */
1961 	public bool isContainer()
1962 	{
1963 		return g_variant_is_container(gVariant) != 0;
1964 	}
1965 
1966 	/**
1967 	 * Checks whether @value has a floating reference count.
1968 	 *
1969 	 * This function should only ever be used to assert that a given variant
1970 	 * is or is not floating, or for debug purposes. To acquire a reference
1971 	 * to a variant that might be floating, always use g_variant_ref_sink()
1972 	 * or g_variant_take_ref().
1973 	 *
1974 	 * See g_variant_ref_sink() for more information about floating reference
1975 	 * counts.
1976 	 *
1977 	 * Returns: whether @value is floating
1978 	 *
1979 	 * Since: 2.26
1980 	 */
1981 	public bool isFloating()
1982 	{
1983 		return g_variant_is_floating(gVariant) != 0;
1984 	}
1985 
1986 	/**
1987 	 * Checks if @value is in normal form.
1988 	 *
1989 	 * The main reason to do this is to detect if a given chunk of
1990 	 * serialised data is in normal form: load the data into a #GVariant
1991 	 * using g_variant_new_from_data() and then use this function to
1992 	 * check.
1993 	 *
1994 	 * If @value is found to be in normal form then it will be marked as
1995 	 * being trusted.  If the value was already marked as being trusted then
1996 	 * this function will immediately return %TRUE.
1997 	 *
1998 	 * Returns: %TRUE if @value is in normal form
1999 	 *
2000 	 * Since: 2.24
2001 	 */
2002 	public bool isNormalForm()
2003 	{
2004 		return g_variant_is_normal_form(gVariant) != 0;
2005 	}
2006 
2007 	/**
2008 	 * Checks if a value has a type matching the provided type.
2009 	 *
2010 	 * Params:
2011 	 *     type = a #GVariantType
2012 	 *
2013 	 * Returns: %TRUE if the type of @value matches @type
2014 	 *
2015 	 * Since: 2.24
2016 	 */
2017 	public bool isOfType(VariantType type)
2018 	{
2019 		return g_variant_is_of_type(gVariant, (type is null) ? null : type.getVariantTypeStruct()) != 0;
2020 	}
2021 
2022 	/**
2023 	 * Creates a heap-allocated #GVariantIter for iterating over the items
2024 	 * in @value.
2025 	 *
2026 	 * Use g_variant_iter_free() to free the return value when you no longer
2027 	 * need it.
2028 	 *
2029 	 * A reference is taken to @value and will be released only when
2030 	 * g_variant_iter_free() is called.
2031 	 *
2032 	 * Returns: a new heap-allocated #GVariantIter
2033 	 *
2034 	 * Since: 2.24
2035 	 */
2036 	public VariantIter iterNew()
2037 	{
2038 		auto p = g_variant_iter_new(gVariant);
2039 		
2040 		if(p is null)
2041 		{
2042 			return null;
2043 		}
2044 		
2045 		return new VariantIter(cast(GVariantIter*) p, true);
2046 	}
2047 
2048 	/**
2049 	 * Looks up a value in a dictionary #GVariant.
2050 	 *
2051 	 * This function works with dictionaries of the type a{s*} (and equally
2052 	 * well with type a{o*}, but we only further discuss the string case
2053 	 * for sake of clarity).
2054 	 *
2055 	 * In the event that @dictionary has the type a{sv}, the @expected_type
2056 	 * string specifies what type of value is expected to be inside of the
2057 	 * variant. If the value inside the variant has a different type then
2058 	 * %NULL is returned. In the event that @dictionary has a value type other
2059 	 * than v then @expected_type must directly match the key type and it is
2060 	 * used to unpack the value directly or an error occurs.
2061 	 *
2062 	 * In either case, if @key is not found in @dictionary, %NULL is returned.
2063 	 *
2064 	 * If the key is found and the value has the correct type, it is
2065 	 * returned.  If @expected_type was specified then any non-%NULL return
2066 	 * value will have this type.
2067 	 *
2068 	 * This function is currently implemented with a linear scan.  If you
2069 	 * plan to do many lookups then #GVariantDict may be more efficient.
2070 	 *
2071 	 * Params:
2072 	 *     key = the key to lookup in the dictionary
2073 	 *     expectedType = a #GVariantType, or %NULL
2074 	 *
2075 	 * Returns: the value of the dictionary key, or %NULL
2076 	 *
2077 	 * Since: 2.28
2078 	 */
2079 	public Variant lookupValue(string key, VariantType expectedType)
2080 	{
2081 		auto p = g_variant_lookup_value(gVariant, Str.toStringz(key), (expectedType is null) ? null : expectedType.getVariantTypeStruct());
2082 		
2083 		if(p is null)
2084 		{
2085 			return null;
2086 		}
2087 		
2088 		return new Variant(cast(GVariant*) p, true);
2089 	}
2090 
2091 	/**
2092 	 * Determines the number of children in a container #GVariant instance.
2093 	 * This includes variants, maybes, arrays, tuples and dictionary
2094 	 * entries.  It is an error to call this function on any other type of
2095 	 * #GVariant.
2096 	 *
2097 	 * For variants, the return value is always 1.  For values with maybe
2098 	 * types, it is always zero or one.  For arrays, it is the length of the
2099 	 * array.  For tuples it is the number of tuple items (which depends
2100 	 * only on the type).  For dictionary entries, it is always 2
2101 	 *
2102 	 * This function is O(1).
2103 	 *
2104 	 * Returns: the number of children in the container
2105 	 *
2106 	 * Since: 2.24
2107 	 */
2108 	public size_t nChildren()
2109 	{
2110 		return g_variant_n_children(gVariant);
2111 	}
2112 
2113 	/**
2114 	 * Pretty-prints @value in the format understood by g_variant_parse().
2115 	 *
2116 	 * The format is described [here][gvariant-text].
2117 	 *
2118 	 * If @type_annotate is %TRUE, then type information is included in
2119 	 * the output.
2120 	 *
2121 	 * Params:
2122 	 *     typeAnnotate = %TRUE if type information should be included in
2123 	 *         the output
2124 	 *
2125 	 * Returns: a newly-allocated string holding the result.
2126 	 *
2127 	 * Since: 2.24
2128 	 */
2129 	public string print(bool typeAnnotate)
2130 	{
2131 		auto retStr = g_variant_print(gVariant, typeAnnotate);
2132 		
2133 		scope(exit) Str.freeString(retStr);
2134 		return Str.toString(retStr);
2135 	}
2136 
2137 	/**
2138 	 * Behaves as g_variant_print(), but operates on a #GString.
2139 	 *
2140 	 * If @string is non-%NULL then it is appended to and returned.  Else,
2141 	 * a new empty #GString is allocated and it is returned.
2142 	 *
2143 	 * Params:
2144 	 *     str = a #GString, or %NULL
2145 	 *     typeAnnotate = %TRUE if type information should be included in
2146 	 *         the output
2147 	 *
2148 	 * Returns: a #GString containing the string
2149 	 *
2150 	 * Since: 2.24
2151 	 */
2152 	public StringG printString(StringG str, bool typeAnnotate)
2153 	{
2154 		auto p = g_variant_print_string(gVariant, (str is null) ? null : str.getStringGStruct(), typeAnnotate);
2155 		
2156 		if(p is null)
2157 		{
2158 			return null;
2159 		}
2160 		
2161 		return new StringG(cast(GString*) p, true);
2162 	}
2163 
2164 	/**
2165 	 * Increases the reference count of @value.
2166 	 *
2167 	 * Returns: the same @value
2168 	 *
2169 	 * Since: 2.24
2170 	 */
2171 	public Variant doref()
2172 	{
2173 		auto p = g_variant_ref(gVariant);
2174 		
2175 		if(p is null)
2176 		{
2177 			return null;
2178 		}
2179 		
2180 		return new Variant(cast(GVariant*) p, true);
2181 	}
2182 
2183 	/**
2184 	 * #GVariant uses a floating reference count system.  All functions with
2185 	 * names starting with `g_variant_new_` return floating
2186 	 * references.
2187 	 *
2188 	 * Calling g_variant_ref_sink() on a #GVariant with a floating reference
2189 	 * will convert the floating reference into a full reference.  Calling
2190 	 * g_variant_ref_sink() on a non-floating #GVariant results in an
2191 	 * additional normal reference being added.
2192 	 *
2193 	 * In other words, if the @value is floating, then this call "assumes
2194 	 * ownership" of the floating reference, converting it to a normal
2195 	 * reference.  If the @value is not floating, then this call adds a
2196 	 * new normal reference increasing the reference count by one.
2197 	 *
2198 	 * All calls that result in a #GVariant instance being inserted into a
2199 	 * container will call g_variant_ref_sink() on the instance.  This means
2200 	 * that if the value was just created (and has only its floating
2201 	 * reference) then the container will assume sole ownership of the value
2202 	 * at that point and the caller will not need to unreference it.  This
2203 	 * makes certain common styles of programming much easier while still
2204 	 * maintaining normal refcounting semantics in situations where values
2205 	 * are not floating.
2206 	 *
2207 	 * Returns: the same @value
2208 	 *
2209 	 * Since: 2.24
2210 	 */
2211 	public Variant refSink()
2212 	{
2213 		auto p = g_variant_ref_sink(gVariant);
2214 		
2215 		if(p is null)
2216 		{
2217 			return null;
2218 		}
2219 		
2220 		return new Variant(cast(GVariant*) p, true);
2221 	}
2222 
2223 	/**
2224 	 * Stores the serialised form of @value at @data.  @data should be
2225 	 * large enough.  See g_variant_get_size().
2226 	 *
2227 	 * The stored data is in machine native byte order but may not be in
2228 	 * fully-normalised form if read from an untrusted source.  See
2229 	 * g_variant_get_normal_form() for a solution.
2230 	 *
2231 	 * As with g_variant_get_data(), to be able to deserialise the
2232 	 * serialised variant successfully, its type and (if the destination
2233 	 * machine might be different) its endianness must also be available.
2234 	 *
2235 	 * This function is approximately O(n) in the size of @data.
2236 	 *
2237 	 * Params:
2238 	 *     data = the location to store the serialised data at
2239 	 *
2240 	 * Since: 2.24
2241 	 */
2242 	public void store(void* data)
2243 	{
2244 		g_variant_store(gVariant, data);
2245 	}
2246 
2247 	/**
2248 	 * If @value is floating, sink it.  Otherwise, do nothing.
2249 	 *
2250 	 * Typically you want to use g_variant_ref_sink() in order to
2251 	 * automatically do the correct thing with respect to floating or
2252 	 * non-floating references, but there is one specific scenario where
2253 	 * this function is helpful.
2254 	 *
2255 	 * The situation where this function is helpful is when creating an API
2256 	 * that allows the user to provide a callback function that returns a
2257 	 * #GVariant.  We certainly want to allow the user the flexibility to
2258 	 * return a non-floating reference from this callback (for the case
2259 	 * where the value that is being returned already exists).
2260 	 *
2261 	 * At the same time, the style of the #GVariant API makes it likely that
2262 	 * for newly-created #GVariant instances, the user can be saved some
2263 	 * typing if they are allowed to return a #GVariant with a floating
2264 	 * reference.
2265 	 *
2266 	 * Using this function on the return value of the user's callback allows
2267 	 * the user to do whichever is more convenient for them.  The caller
2268 	 * will alway receives exactly one full reference to the value: either
2269 	 * the one that was returned in the first place, or a floating reference
2270 	 * that has been converted to a full reference.
2271 	 *
2272 	 * This function has an odd interaction when combined with
2273 	 * g_variant_ref_sink() running at the same time in another thread on
2274 	 * the same #GVariant instance.  If g_variant_ref_sink() runs first then
2275 	 * the result will be that the floating reference is converted to a hard
2276 	 * reference.  If g_variant_take_ref() runs first then the result will
2277 	 * be that the floating reference is converted to a hard reference and
2278 	 * an additional reference on top of that one is added.  It is best to
2279 	 * avoid this situation.
2280 	 *
2281 	 * Returns: the same @value
2282 	 */
2283 	public Variant takeRef()
2284 	{
2285 		auto p = g_variant_take_ref(gVariant);
2286 		
2287 		if(p is null)
2288 		{
2289 			return null;
2290 		}
2291 		
2292 		return new Variant(cast(GVariant*) p, true);
2293 	}
2294 
2295 	/**
2296 	 * Decreases the reference count of @value.  When its reference count
2297 	 * drops to 0, the memory used by the variant is freed.
2298 	 *
2299 	 * Since: 2.24
2300 	 */
2301 	public void unref()
2302 	{
2303 		g_variant_unref(gVariant);
2304 	}
2305 
2306 	/**
2307 	 * Determines if a given string is a valid D-Bus object path.  You
2308 	 * should ensure that a string is a valid D-Bus object path before
2309 	 * passing it to g_variant_new_object_path().
2310 	 *
2311 	 * A valid object path starts with '/' followed by zero or more
2312 	 * sequences of characters separated by '/' characters.  Each sequence
2313 	 * must contain only the characters "[A-Z][a-z][0-9]_".  No sequence
2314 	 * (including the one following the final '/' character) may be empty.
2315 	 *
2316 	 * Params:
2317 	 *     str = a normal C nul-terminated string
2318 	 *
2319 	 * Returns: %TRUE if @string is a D-Bus object path
2320 	 *
2321 	 * Since: 2.24
2322 	 */
2323 	public static bool isObjectPath(string str)
2324 	{
2325 		return g_variant_is_object_path(Str.toStringz(str)) != 0;
2326 	}
2327 
2328 	/**
2329 	 * Determines if a given string is a valid D-Bus type signature.  You
2330 	 * should ensure that a string is a valid D-Bus type signature before
2331 	 * passing it to g_variant_new_signature().
2332 	 *
2333 	 * D-Bus type signatures consist of zero or more definite #GVariantType
2334 	 * strings in sequence.
2335 	 *
2336 	 * Params:
2337 	 *     str = a normal C nul-terminated string
2338 	 *
2339 	 * Returns: %TRUE if @string is a D-Bus type signature
2340 	 *
2341 	 * Since: 2.24
2342 	 */
2343 	public static bool isSignature(string str)
2344 	{
2345 		return g_variant_is_signature(Str.toStringz(str)) != 0;
2346 	}
2347 
2348 	/**
2349 	 * Parses a #GVariant from a text representation.
2350 	 *
2351 	 * A single #GVariant is parsed from the content of @text.
2352 	 *
2353 	 * The format is described [here][gvariant-text].
2354 	 *
2355 	 * The memory at @limit will never be accessed and the parser behaves as
2356 	 * if the character at @limit is the nul terminator.  This has the
2357 	 * effect of bounding @text.
2358 	 *
2359 	 * If @endptr is non-%NULL then @text is permitted to contain data
2360 	 * following the value that this function parses and @endptr will be
2361 	 * updated to point to the first character past the end of the text
2362 	 * parsed by this function.  If @endptr is %NULL and there is extra data
2363 	 * then an error is returned.
2364 	 *
2365 	 * If @type is non-%NULL then the value will be parsed to have that
2366 	 * type.  This may result in additional parse errors (in the case that
2367 	 * the parsed value doesn't fit the type) but may also result in fewer
2368 	 * errors (in the case that the type would have been ambiguous, such as
2369 	 * with empty arrays).
2370 	 *
2371 	 * In the event that the parsing is successful, the resulting #GVariant
2372 	 * is returned. It is never floating, and must be freed with
2373 	 * g_variant_unref().
2374 	 *
2375 	 * In case of any error, %NULL will be returned.  If @error is non-%NULL
2376 	 * then it will be set to reflect the error that occurred.
2377 	 *
2378 	 * Officially, the language understood by the parser is "any string
2379 	 * produced by g_variant_print()".
2380 	 *
2381 	 * Params:
2382 	 *     type = a #GVariantType, or %NULL
2383 	 *     text = a string containing a GVariant in text form
2384 	 *     limit = a pointer to the end of @text, or %NULL
2385 	 *     endptr = a location to store the end pointer, or %NULL
2386 	 *
2387 	 * Returns: a non-floating reference to a #GVariant, or %NULL
2388 	 *
2389 	 * Throws: GException on failure.
2390 	 */
2391 	public static Variant parse(VariantType type, string text, string limit, string[] endptr)
2392 	{
2393 		GError* err = null;
2394 		
2395 		auto p = g_variant_parse((type is null) ? null : type.getVariantTypeStruct(), Str.toStringz(text), Str.toStringz(limit), Str.toStringzArray(endptr), &err);
2396 		
2397 		if (err !is null)
2398 		{
2399 			throw new GException( new ErrorG(err) );
2400 		}
2401 		
2402 		if(p is null)
2403 		{
2404 			return null;
2405 		}
2406 		
2407 		return new Variant(cast(GVariant*) p, true);
2408 	}
2409 
2410 	/**
2411 	 * Pretty-prints a message showing the context of a #GVariant parse
2412 	 * error within the string for which parsing was attempted.
2413 	 *
2414 	 * The resulting string is suitable for output to the console or other
2415 	 * monospace media where newlines are treated in the usual way.
2416 	 *
2417 	 * The message will typically look something like one of the following:
2418 	 *
2419 	 * |[
2420 	 * unterminated string constant:
2421 	 * (1, 2, 3, 'abc
2422 	 * ^^^^
2423 	 * ]|
2424 	 *
2425 	 * or
2426 	 *
2427 	 * |[
2428 	 * unable to find a common type:
2429 	 * [1, 2, 3, 'str']
2430 	 * ^        ^^^^^
2431 	 * ]|
2432 	 *
2433 	 * The format of the message may change in a future version.
2434 	 *
2435 	 * @error must have come from a failed attempt to g_variant_parse() and
2436 	 * @source_str must be exactly the same string that caused the error.
2437 	 * If @source_str was not nul-terminated when you passed it to
2438 	 * g_variant_parse() then you must add nul termination before using this
2439 	 * function.
2440 	 *
2441 	 * Params:
2442 	 *     error = a #GError from the #GVariantParseError domain
2443 	 *     sourceStr = the string that was given to the parser
2444 	 *
2445 	 * Returns: the printed message
2446 	 *
2447 	 * Since: 2.40
2448 	 */
2449 	public static string parseErrorPrintContext(ErrorG error, string sourceStr)
2450 	{
2451 		auto retStr = g_variant_parse_error_print_context((error is null) ? null : error.getErrorGStruct(), Str.toStringz(sourceStr));
2452 		
2453 		scope(exit) Str.freeString(retStr);
2454 		return Str.toString(retStr);
2455 	}
2456 
2457 	/** */
2458 	public static GQuark parseErrorQuark()
2459 	{
2460 		return g_variant_parse_error_quark();
2461 	}
2462 
2463 	/**
2464 	 * Same as g_variant_error_quark().
2465 	 *
2466 	 * Deprecated: Use g_variant_parse_error_quark() instead.
2467 	 */
2468 	public static GQuark parserGetErrorQuark()
2469 	{
2470 		return g_variant_parser_get_error_quark();
2471 	}
2472 }