1 /*
2  * This file is part of gtkD.
3  *
4  * gtkD is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU Lesser General Public License
6  * as published by the Free Software Foundation; either version 3
7  * of the License, or (at your option) any later version, with
8  * some exceptions, please read the COPYING file.
9  *
10  * gtkD is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU Lesser General Public License for more details.
14  *
15  * You should have received a copy of the GNU Lesser General Public License
16  * along with gtkD; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110, USA
18  */
19 
20 // generated automatically - do not change
21 // find conversion definition on APILookup.txt
22 // implement new conversion functionalities on the wrap.utils pakage
23 
24 
25 module pango.PgMatrix;
26 
27 private import gobject.ObjectG;
28 private import gtkc.pango;
29 public  import gtkc.pangotypes;
30 
31 
32 /**
33  * A structure specifying a transformation between user-space
34  * coordinates and device coordinates. The transformation
35  * is given by
36  * 
37  * <programlisting>
38  * x_device = x_user * matrix->xx + y_user * matrix->xy + matrix->x0;
39  * y_device = x_user * matrix->yx + y_user * matrix->yy + matrix->y0;
40  * </programlisting>
41  *
42  * Since: 1.6
43  */
44 public class PgMatrix
45 {
46 	/** the main Gtk struct */
47 	protected PangoMatrix* pangoMatrix;
48 
49 	/** Get the main Gtk struct */
50 	public PangoMatrix* getPgMatrixStruct()
51 	{
52 		return pangoMatrix;
53 	}
54 
55 	/** the main Gtk struct as a void* */
56 	protected void* getStruct()
57 	{
58 		return cast(void*)pangoMatrix;
59 	}
60 
61 	/**
62 	 * Sets our main struct and passes it to the parent class.
63 	 */
64 	public this (PangoMatrix* pangoMatrix)
65 	{
66 		this.pangoMatrix = pangoMatrix;
67 	}
68 
69 
70 	/** */
71 	public static GType getType()
72 	{
73 		return pango_matrix_get_type();
74 	}
75 
76 	/**
77 	 * Changes the transformation represented by @matrix to be the
78 	 * transformation given by first applying transformation
79 	 * given by @new_matrix then applying the original transformation.
80 	 *
81 	 * Params:
82 	 *     newMatrix = a #PangoMatrix
83 	 *
84 	 * Since: 1.6
85 	 */
86 	public void concat(PgMatrix newMatrix)
87 	{
88 		pango_matrix_concat(pangoMatrix, (newMatrix is null) ? null : newMatrix.getPgMatrixStruct());
89 	}
90 
91 	/**
92 	 * Copies a #PangoMatrix.
93 	 *
94 	 * Return: the newly allocated #PangoMatrix, which
95 	 *     should be freed with pango_matrix_free(), or %NULL if
96 	 *     @matrix was %NULL.
97 	 *
98 	 * Since: 1.6
99 	 */
100 	public PgMatrix copy()
101 	{
102 		auto p = pango_matrix_copy(pangoMatrix);
103 		
104 		if(p is null)
105 		{
106 			return null;
107 		}
108 		
109 		return ObjectG.getDObject!(PgMatrix)(cast(PangoMatrix*) p);
110 	}
111 
112 	/**
113 	 * Free a #PangoMatrix created with pango_matrix_copy().
114 	 *
115 	 * Since: 1.6
116 	 */
117 	public void free()
118 	{
119 		pango_matrix_free(pangoMatrix);
120 	}
121 
122 	/**
123 	 * Returns the scale factor of a matrix on the height of the font.
124 	 * That is, the scale factor in the direction perpendicular to the
125 	 * vector that the X coordinate is mapped to.  If the scale in the X
126 	 * coordinate is needed as well, use pango_matrix_get_font_scale_factors().
127 	 *
128 	 * Return: the scale factor of @matrix on the height of the font,
129 	 *     or 1.0 if @matrix is %NULL.
130 	 *
131 	 * Since: 1.12
132 	 */
133 	public double getFontScaleFactor()
134 	{
135 		return pango_matrix_get_font_scale_factor(pangoMatrix);
136 	}
137 
138 	/**
139 	 * Calculates the scale factor of a matrix on the width and height of the font.
140 	 * That is, @xscale is the scale factor in the direction of the X coordinate,
141 	 * and @yscale is the scale factor in the direction perpendicular to the
142 	 * vector that the X coordinate is mapped to.
143 	 *
144 	 * Note that output numbers will always be non-negative.
145 	 *
146 	 * Params:
147 	 *     xscale = output scale factor in the x direction, or %NULL
148 	 *     yscale = output scale factor perpendicular to the x direction, or %NULL
149 	 *
150 	 * Since: 1.38
151 	 */
152 	public void getFontScaleFactors(out double xscale, out double yscale)
153 	{
154 		pango_matrix_get_font_scale_factors(pangoMatrix, &xscale, &yscale);
155 	}
156 
157 	/**
158 	 * Changes the transformation represented by @matrix to be the
159 	 * transformation given by first rotating by @degrees degrees
160 	 * counter-clockwise then applying the original transformation.
161 	 *
162 	 * Params:
163 	 *     degrees = degrees to rotate counter-clockwise
164 	 *
165 	 * Since: 1.6
166 	 */
167 	public void rotate(double degrees)
168 	{
169 		pango_matrix_rotate(pangoMatrix, degrees);
170 	}
171 
172 	/**
173 	 * Changes the transformation represented by @matrix to be the
174 	 * transformation given by first scaling by @sx in the X direction
175 	 * and @sy in the Y direction then applying the original
176 	 * transformation.
177 	 *
178 	 * Params:
179 	 *     scaleX = amount to scale by in X direction
180 	 *     scaleY = amount to scale by in Y direction
181 	 *
182 	 * Since: 1.6
183 	 */
184 	public void scale(double scaleX, double scaleY)
185 	{
186 		pango_matrix_scale(pangoMatrix, scaleX, scaleY);
187 	}
188 
189 	/**
190 	 * Transforms the distance vector (@dx,@dy) by @matrix. This is
191 	 * similar to pango_matrix_transform_point() except that the translation
192 	 * components of the transformation are ignored. The calculation of
193 	 * the returned vector is as follows:
194 	 *
195 	 * <programlisting>
196 	 * dx2 = dx1 * xx + dy1 * xy;
197 	 * dy2 = dx1 * yx + dy1 * yy;
198 	 * </programlisting>
199 	 *
200 	 * Affine transformations are position invariant, so the same vector
201 	 * always transforms to the same vector. If (@x1,@y1) transforms
202 	 * to (@x2,@y2) then (@x1+@dx1,@y1+@dy1) will transform to
203 	 * (@x1+@dx2,@y1+@dy2) for all values of @x1 and @x2.
204 	 *
205 	 * Params:
206 	 *     dx = in/out X component of a distance vector
207 	 *     dy = in/out Y component of a distance vector
208 	 *
209 	 * Since: 1.16
210 	 */
211 	public void transformDistance(ref double dx, ref double dy)
212 	{
213 		pango_matrix_transform_distance(pangoMatrix, &dx, &dy);
214 	}
215 
216 	/**
217 	 * First transforms the @rect using @matrix, then calculates the bounding box
218 	 * of the transformed rectangle.  The rectangle should be in device units
219 	 * (pixels).
220 	 *
221 	 * This function is useful for example when you want to draw a rotated
222 	 * @PangoLayout to an image buffer, and want to know how large the image
223 	 * should be and how much you should shift the layout when rendering.
224 	 *
225 	 * For better accuracy, you should use pango_matrix_transform_rectangle() on
226 	 * original rectangle in Pango units and convert to pixels afterward
227 	 * using pango_extents_to_pixels()'s first argument.
228 	 *
229 	 * Params:
230 	 *     rect = in/out bounding box in device units, or %NULL
231 	 *
232 	 * Since: 1.16
233 	 */
234 	public void transformPixelRectangle(ref PangoRectangle rect)
235 	{
236 		pango_matrix_transform_pixel_rectangle(pangoMatrix, &rect);
237 	}
238 
239 	/**
240 	 * Transforms the point (@x, @y) by @matrix.
241 	 *
242 	 * Params:
243 	 *     x = in/out X position
244 	 *     y = in/out Y position
245 	 *
246 	 * Since: 1.16
247 	 */
248 	public void transformPoint(ref double x, ref double y)
249 	{
250 		pango_matrix_transform_point(pangoMatrix, &x, &y);
251 	}
252 
253 	/**
254 	 * First transforms @rect using @matrix, then calculates the bounding box
255 	 * of the transformed rectangle.  The rectangle should be in Pango units.
256 	 *
257 	 * This function is useful for example when you want to draw a rotated
258 	 * @PangoLayout to an image buffer, and want to know how large the image
259 	 * should be and how much you should shift the layout when rendering.
260 	 *
261 	 * If you have a rectangle in device units (pixels), use
262 	 * pango_matrix_transform_pixel_rectangle().
263 	 *
264 	 * If you have the rectangle in Pango units and want to convert to
265 	 * transformed pixel bounding box, it is more accurate to transform it first
266 	 * (using this function) and pass the result to pango_extents_to_pixels(),
267 	 * first argument, for an inclusive rounded rectangle.
268 	 * However, there are valid reasons that you may want to convert
269 	 * to pixels first and then transform, for example when the transformed
270 	 * coordinates may overflow in Pango units (large matrix translation for
271 	 * example).
272 	 *
273 	 * Params:
274 	 *     rect = in/out bounding box in Pango units, or %NULL
275 	 *
276 	 * Since: 1.16
277 	 */
278 	public void transformRectangle(ref PangoRectangle rect)
279 	{
280 		pango_matrix_transform_rectangle(pangoMatrix, &rect);
281 	}
282 
283 	/**
284 	 * Changes the transformation represented by @matrix to be the
285 	 * transformation given by first translating by (@tx, @ty)
286 	 * then applying the original transformation.
287 	 *
288 	 * Params:
289 	 *     tx = amount to translate in the X direction
290 	 *     ty = amount to translate in the Y direction
291 	 *
292 	 * Since: 1.6
293 	 */
294 	public void translate(double tx, double ty)
295 	{
296 		pango_matrix_translate(pangoMatrix, tx, ty);
297 	}
298 
299 	/**
300 	 * Converts extents from Pango units to device units, dividing by the
301 	 * %PANGO_SCALE factor and performing rounding.
302 	 *
303 	 * The @inclusive rectangle is converted by flooring the x/y coordinates and extending
304 	 * width/height, such that the final rectangle completely includes the original
305 	 * rectangle.
306 	 *
307 	 * The @nearest rectangle is converted by rounding the coordinates
308 	 * of the rectangle to the nearest device unit (pixel).
309 	 *
310 	 * The rule to which argument to use is: if you want the resulting device-space
311 	 * rectangle to completely contain the original rectangle, pass it in as @inclusive.
312 	 * If you want two touching-but-not-overlapping rectangles stay
313 	 * touching-but-not-overlapping after rounding to device units, pass them in
314 	 * as @nearest.
315 	 *
316 	 * Params:
317 	 *     inclusive = rectangle to round to pixels inclusively, or %NULL.
318 	 *     nearest = rectangle to round to nearest pixels, or %NULL.
319 	 *
320 	 * Since: 1.16
321 	 */
322 	public static void extentsToPixels(PangoRectangle* inclusive, PangoRectangle* nearest)
323 	{
324 		pango_extents_to_pixels(inclusive, nearest);
325 	}
326 
327 	/**
328 	 * Converts a floating-point number to Pango units: multiplies
329 	 * it by %PANGO_SCALE and rounds to nearest integer.
330 	 *
331 	 * Params:
332 	 *     d = double floating-point value
333 	 *
334 	 * Return: the value in Pango units.
335 	 *
336 	 * Since: 1.16
337 	 */
338 	public static int unitsFromDouble(double d)
339 	{
340 		return pango_units_from_double(d);
341 	}
342 
343 	/**
344 	 * Converts a number in Pango units to floating-point: divides
345 	 * it by %PANGO_SCALE.
346 	 *
347 	 * Params:
348 	 *     i = value in Pango units
349 	 *
350 	 * Return: the double value.
351 	 *
352 	 * Since: 1.16
353 	 */
354 	public static double unitsToDouble(int i)
355 	{
356 		return pango_units_to_double(i);
357 	}
358 }