1 /*
2  * This file is part of gtkD.
3  *
4  * gtkD is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU Lesser General Public License
6  * as published by the Free Software Foundation; either version 3
7  * of the License, or (at your option) any later version, with
8  * some exceptions, please read the COPYING file.
9  *
10  * gtkD is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU Lesser General Public License for more details.
14  *
15  * You should have received a copy of the GNU Lesser General Public License
16  * along with gtkD; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110, USA
18  */
19 
20 // generated automatically - do not change
21 // find conversion definition on APILookup.txt
22 // implement new conversion functionalities on the wrap.utils pakage
23 
24 
25 module glib.Variant;
26 
27 private import glib.Bytes;
28 private import glib.ConstructionException;
29 private import glib.ErrorG;
30 private import glib.GException;
31 private import glib.Str;
32 private import glib.StringG;
33 private import glib.VariantIter;
34 private import glib.VariantType;
35 private import gtkc.glib;
36 public  import gtkc.glibtypes;
37 
38 
39 /**
40  * #GVariant is a variant datatype; it stores a value along with
41  * information about the type of that value.  The range of possible
42  * values is determined by the type.  The type system used by #GVariant
43  * is #GVariantType.
44  * 
45  * #GVariant instances always have a type and a value (which are given
46  * at construction time).  The type and value of a #GVariant instance
47  * can never change other than by the #GVariant itself being
48  * destroyed.  A #GVariant cannot contain a pointer.
49  * 
50  * #GVariant is reference counted using g_variant_ref() and
51  * g_variant_unref().  #GVariant also has floating reference counts --
52  * see g_variant_ref_sink().
53  * 
54  * #GVariant is completely threadsafe.  A #GVariant instance can be
55  * concurrently accessed in any way from any number of threads without
56  * problems.
57  * 
58  * #GVariant is heavily optimised for dealing with data in serialised
59  * form.  It works particularly well with data located in memory-mapped
60  * files.  It can perform nearly all deserialisation operations in a
61  * small constant time, usually touching only a single memory page.
62  * Serialised #GVariant data can also be sent over the network.
63  * 
64  * #GVariant is largely compatible with D-Bus.  Almost all types of
65  * #GVariant instances can be sent over D-Bus.  See #GVariantType for
66  * exceptions.  (However, #GVariant's serialisation format is not the same
67  * as the serialisation format of a D-Bus message body: use #GDBusMessage,
68  * in the gio library, for those.)
69  * 
70  * For space-efficiency, the #GVariant serialisation format does not
71  * automatically include the variant's length, type or endianness,
72  * which must either be implied from context (such as knowledge that a
73  * particular file format always contains a little-endian
74  * %G_VARIANT_TYPE_VARIANT which occupies the whole length of the file)
75  * or supplied out-of-band (for instance, a length, type and/or endianness
76  * indicator could be placed at the beginning of a file, network message
77  * or network stream).
78  * 
79  * A #GVariant's size is limited mainly by any lower level operating
80  * system constraints, such as the number of bits in #gsize.  For
81  * example, it is reasonable to have a 2GB file mapped into memory
82  * with #GMappedFile, and call g_variant_new_from_data() on it.
83  * 
84  * For convenience to C programmers, #GVariant features powerful
85  * varargs-based value construction and destruction.  This feature is
86  * designed to be embedded in other libraries.
87  * 
88  * There is a Python-inspired text language for describing #GVariant
89  * values.  #GVariant includes a printer for this language and a parser
90  * with type inferencing.
91  * 
92  * ## Memory Use
93  * 
94  * #GVariant tries to be quite efficient with respect to memory use.
95  * This section gives a rough idea of how much memory is used by the
96  * current implementation.  The information here is subject to change
97  * in the future.
98  * 
99  * The memory allocated by #GVariant can be grouped into 4 broad
100  * purposes: memory for serialised data, memory for the type
101  * information cache, buffer management memory and memory for the
102  * #GVariant structure itself.
103  * 
104  * ## Serialised Data Memory
105  * 
106  * This is the memory that is used for storing GVariant data in
107  * serialised form.  This is what would be sent over the network or
108  * what would end up on disk, not counting any indicator of the
109  * endianness, or of the length or type of the top-level variant.
110  * 
111  * The amount of memory required to store a boolean is 1 byte. 16,
112  * 32 and 64 bit integers and double precision floating point numbers
113  * use their "natural" size.  Strings (including object path and
114  * signature strings) are stored with a nul terminator, and as such
115  * use the length of the string plus 1 byte.
116  * 
117  * Maybe types use no space at all to represent the null value and
118  * use the same amount of space (sometimes plus one byte) as the
119  * equivalent non-maybe-typed value to represent the non-null case.
120  * 
121  * Arrays use the amount of space required to store each of their
122  * members, concatenated.  Additionally, if the items stored in an
123  * array are not of a fixed-size (ie: strings, other arrays, etc)
124  * then an additional framing offset is stored for each item.  The
125  * size of this offset is either 1, 2 or 4 bytes depending on the
126  * overall size of the container.  Additionally, extra padding bytes
127  * are added as required for alignment of child values.
128  * 
129  * Tuples (including dictionary entries) use the amount of space
130  * required to store each of their members, concatenated, plus one
131  * framing offset (as per arrays) for each non-fixed-sized item in
132  * the tuple, except for the last one.  Additionally, extra padding
133  * bytes are added as required for alignment of child values.
134  * 
135  * Variants use the same amount of space as the item inside of the
136  * variant, plus 1 byte, plus the length of the type string for the
137  * item inside the variant.
138  * 
139  * As an example, consider a dictionary mapping strings to variants.
140  * In the case that the dictionary is empty, 0 bytes are required for
141  * the serialisation.
142  * 
143  * If we add an item "width" that maps to the int32 value of 500 then
144  * we will use 4 byte to store the int32 (so 6 for the variant
145  * containing it) and 6 bytes for the string.  The variant must be
146  * aligned to 8 after the 6 bytes of the string, so that's 2 extra
147  * bytes.  6 (string) + 2 (padding) + 6 (variant) is 14 bytes used
148  * for the dictionary entry.  An additional 1 byte is added to the
149  * array as a framing offset making a total of 15 bytes.
150  * 
151  * If we add another entry, "title" that maps to a nullable string
152  * that happens to have a value of null, then we use 0 bytes for the
153  * null value (and 3 bytes for the variant to contain it along with
154  * its type string) plus 6 bytes for the string.  Again, we need 2
155  * padding bytes.  That makes a total of 6 + 2 + 3 = 11 bytes.
156  * 
157  * We now require extra padding between the two items in the array.
158  * After the 14 bytes of the first item, that's 2 bytes required.
159  * We now require 2 framing offsets for an extra two
160  * bytes. 14 + 2 + 11 + 2 = 29 bytes to encode the entire two-item
161  * dictionary.
162  * 
163  * ## Type Information Cache
164  * 
165  * For each GVariant type that currently exists in the program a type
166  * information structure is kept in the type information cache.  The
167  * type information structure is required for rapid deserialisation.
168  * 
169  * Continuing with the above example, if a #GVariant exists with the
170  * type "a{sv}" then a type information struct will exist for
171  * "a{sv}", "{sv}", "s", and "v".  Multiple uses of the same type
172  * will share the same type information.  Additionally, all
173  * single-digit types are stored in read-only static memory and do
174  * not contribute to the writable memory footprint of a program using
175  * #GVariant.
176  * 
177  * Aside from the type information structures stored in read-only
178  * memory, there are two forms of type information.  One is used for
179  * container types where there is a single element type: arrays and
180  * maybe types.  The other is used for container types where there
181  * are multiple element types: tuples and dictionary entries.
182  * 
183  * Array type info structures are 6 * sizeof (void *), plus the
184  * memory required to store the type string itself.  This means that
185  * on 32-bit systems, the cache entry for "a{sv}" would require 30
186  * bytes of memory (plus malloc overhead).
187  * 
188  * Tuple type info structures are 6 * sizeof (void *), plus 4 *
189  * sizeof (void *) for each item in the tuple, plus the memory
190  * required to store the type string itself.  A 2-item tuple, for
191  * example, would have a type information structure that consumed
192  * writable memory in the size of 14 * sizeof (void *) (plus type
193  * string)  This means that on 32-bit systems, the cache entry for
194  * "{sv}" would require 61 bytes of memory (plus malloc overhead).
195  * 
196  * This means that in total, for our "a{sv}" example, 91 bytes of
197  * type information would be allocated.
198  * 
199  * The type information cache, additionally, uses a #GHashTable to
200  * store and lookup the cached items and stores a pointer to this
201  * hash table in static storage.  The hash table is freed when there
202  * are zero items in the type cache.
203  * 
204  * Although these sizes may seem large it is important to remember
205  * that a program will probably only have a very small number of
206  * different types of values in it and that only one type information
207  * structure is required for many different values of the same type.
208  * 
209  * ## Buffer Management Memory
210  * 
211  * #GVariant uses an internal buffer management structure to deal
212  * with the various different possible sources of serialised data
213  * that it uses.  The buffer is responsible for ensuring that the
214  * correct call is made when the data is no longer in use by
215  * #GVariant.  This may involve a g_free() or a g_slice_free() or
216  * even g_mapped_file_unref().
217  * 
218  * One buffer management structure is used for each chunk of
219  * serialised data.  The size of the buffer management structure
220  * is 4 * (void *).  On 32-bit systems, that's 16 bytes.
221  * 
222  * ## GVariant structure
223  * 
224  * The size of a #GVariant structure is 6 * (void *).  On 32-bit
225  * systems, that's 24 bytes.
226  * 
227  * #GVariant structures only exist if they are explicitly created
228  * with API calls.  For example, if a #GVariant is constructed out of
229  * serialised data for the example given above (with the dictionary)
230  * then although there are 9 individual values that comprise the
231  * entire dictionary (two keys, two values, two variants containing
232  * the values, two dictionary entries, plus the dictionary itself),
233  * only 1 #GVariant instance exists -- the one referring to the
234  * dictionary.
235  * 
236  * If calls are made to start accessing the other values then
237  * #GVariant instances will exist for those values only for as long
238  * as they are in use (ie: until you call g_variant_unref()).  The
239  * type information is shared.  The serialised data and the buffer
240  * management structure for that serialised data is shared by the
241  * child.
242  * 
243  * ## Summary
244  * 
245  * To put the entire example together, for our dictionary mapping
246  * strings to variants (with two entries, as given above), we are
247  * using 91 bytes of memory for type information, 29 byes of memory
248  * for the serialised data, 16 bytes for buffer management and 24
249  * bytes for the #GVariant instance, or a total of 160 bytes, plus
250  * malloc overhead.  If we were to use g_variant_get_child_value() to
251  * access the two dictionary entries, we would use an additional 48
252  * bytes.  If we were to have other dictionaries of the same type, we
253  * would use more memory for the serialised data and buffer
254  * management for those dictionaries, but the type information would
255  * be shared.
256  *
257  * Since: 2.24
258  */
259 public class Variant
260 {
261 	/** the main Gtk struct */
262 	protected GVariant* gVariant;
263 
264 	/** Get the main Gtk struct */
265 	public GVariant* getVariantStruct()
266 	{
267 		return gVariant;
268 	}
269 
270 	/** the main Gtk struct as a void* */
271 	protected void* getStruct()
272 	{
273 		return cast(void*)gVariant;
274 	}
275 
276 	/**
277 	 * Sets our main struct and passes it to the parent class.
278 	 */
279 	public this (GVariant* gVariant)
280 	{
281 		this.gVariant = gVariant;
282 	}
283 
284 	/**
285 	 * Creates a DBus object path GVariant with the contents of string.
286 	 * string must be a valid DBus object path.
287 	 * Use Variant.isObjectPath() if you're not sure.
288 	 *
289 	 * Since: 2.24
290 	 *
291 	 * Throws: ConstructionException GTK+ fails to create the object.
292 	 */
293 	public static Variant fromObjectPath(string path)
294 	{
295 		auto p = g_variant_new_object_path(Str.toStringz(path));
296 		if(p is null)
297 		{
298 			throw new ConstructionException("null returned by g_variant_new_object_path");
299 		}
300 		return new Variant(cast(GVariant*) p);
301 	}
302 	
303 	/**
304 	 * Creates a DBus type signature GVariant with the contents of string.
305 	 * string must be a valid DBus type signature.
306 	 * Use Variant.isSignature() if you're not sure.
307 	 *
308 	 * Since: 2.24
309 	 *
310 	 * Throws: ConstructionException GTK+ fails to create the object.
311 	 */
312 	public static Variant fromSignature(string signature)
313 	{
314 		auto p = g_variant_new_signature(Str.toStringz(signature));
315 		if(p is null)
316 		{
317 			throw new ConstructionException("null returned by g_variant_new_signature");
318 		}
319 		return new Variant(cast(GVariant*) p);
320 	}
321 	
322 	/**
323 	 * Creates an array-of-bytes GVariant with the contents of string.
324 	 * This function is just like new Variant(string) except that the string
325 	 * need not be valid utf8.
326 	 *
327 	 * The nul terminator character at the end of the string is stored in
328 	 * the array.
329 	 *
330 	 * Throws: ConstructionException GTK+ fails to create the object.
331 	 */
332 	public static Variant fromByteString(string byteString)
333 	{
334 		auto p = g_variant_new_bytestring(Str.toStringz(byteString));
335 		if(p is null)
336 		{
337 			throw new ConstructionException("null returned by g_variant_new_bytestring");
338 		}
339 		return new Variant(cast(GVariant*) p);
340 	}
341 	
342 	/**
343 	 * Constructs an array of object paths Variant from the given array
344 	 * of strings.
345 	 *
346 	 * Each string must be a valid Variant object path.
347 	 *
348 	 * Since: 2.30
349 	 *
350 	 * Params:
351 	 *     strv   = an array of strings.
352 	 *
353 	 * Throws: ConstructionException GTK+ fails to create the object.
354 	 */
355 	public static Variant fromObjv(string[] strv)
356 	{
357 		// GVariant * g_variant_new_objv (const gchar * const *strv,  gssize length);
358 		auto p = g_variant_new_objv(Str.toStringzArray(strv), strv.length);
359 		if(p is null)
360 		{
361 			throw new ConstructionException("null returned by g_variant_new_objv(strv, length)");
362 		}
363 		return new Variant(cast(GVariant*) p);
364 	}
365 	
366 	/**
367 	 * Constructs an array of bytestring GVariant from the given array of
368 	 * strings. If length is -1 then strv is null-terminated.
369 	 *
370 	 * Since: 2.26
371 	 *
372 	 * Params:
373 	 *     strv   = an array of strings.
374 	 *
375 	 * Throws: ConstructionException GTK+ fails to create the object.
376 	 */
377 	public static Variant fromByteStringArray(string[] strv)
378 	{
379 		auto p = g_variant_new_bytestring_array(Str.toStringzArray(strv), strv.length);
380 		if(p is null)
381 		{
382 			throw new ConstructionException("null returned by g_variant_new_bytestring_array(strv, length)");
383 		}
384 		return new Variant(cast(GVariant*) p);
385 	}
386 
387 	/**
388 	 */
389 
390 	/**
391 	 * Creates a new #GVariant array from @children.
392 	 *
393 	 * @child_type must be non-%NULL if @n_children is zero.  Otherwise, the
394 	 * child type is determined by inspecting the first element of the
395 	 * @children array.  If @child_type is non-%NULL then it must be a
396 	 * definite type.
397 	 *
398 	 * The items of the array are taken from the @children array.  No entry
399 	 * in the @children array may be %NULL.
400 	 *
401 	 * All items in the array must have the same type, which must be the
402 	 * same as @child_type, if given.
403 	 *
404 	 * If the @children are floating references (see g_variant_ref_sink()), the
405 	 * new instance takes ownership of them as if via g_variant_ref_sink().
406 	 *
407 	 * Params:
408 	 *     childType = the element type of the new array
409 	 *     children = an array of
410 	 *         #GVariant pointers, the children
411 	 *     nChildren = the length of @children
412 	 *
413 	 * Return: a floating reference to a new #GVariant array
414 	 *
415 	 * Since: 2.24
416 	 *
417 	 * Throws: ConstructionException GTK+ fails to create the object.
418 	 */
419 	public this(VariantType childType, Variant[] children)
420 	{
421 		GVariant*[] childrenArray = new GVariant*[children.length];
422 		for ( int i = 0; i < children.length; i++ )
423 		{
424 			childrenArray[i] = children[i].getVariantStruct();
425 		}
426 		
427 		auto p = g_variant_new_array((childType is null) ? null : childType.getVariantTypeStruct(), childrenArray.ptr, cast(size_t)children.length);
428 		
429 		if(p is null)
430 		{
431 			throw new ConstructionException("null returned by new_array");
432 		}
433 		
434 		this(cast(GVariant*) p);
435 	}
436 
437 	/**
438 	 * Creates a new boolean #GVariant instance -- either %TRUE or %FALSE.
439 	 *
440 	 * Params:
441 	 *     value = a #gboolean value
442 	 *
443 	 * Return: a floating reference to a new boolean #GVariant instance
444 	 *
445 	 * Since: 2.24
446 	 *
447 	 * Throws: ConstructionException GTK+ fails to create the object.
448 	 */
449 	public this(bool value)
450 	{
451 		auto p = g_variant_new_boolean(value);
452 		
453 		if(p is null)
454 		{
455 			throw new ConstructionException("null returned by new_boolean");
456 		}
457 		
458 		this(cast(GVariant*) p);
459 	}
460 
461 	/**
462 	 * Creates a new byte #GVariant instance.
463 	 *
464 	 * Params:
465 	 *     value = a #guint8 value
466 	 *
467 	 * Return: a floating reference to a new byte #GVariant instance
468 	 *
469 	 * Since: 2.24
470 	 *
471 	 * Throws: ConstructionException GTK+ fails to create the object.
472 	 */
473 	public this(char value)
474 	{
475 		auto p = g_variant_new_byte(value);
476 		
477 		if(p is null)
478 		{
479 			throw new ConstructionException("null returned by new_byte");
480 		}
481 		
482 		this(cast(GVariant*) p);
483 	}
484 
485 	/**
486 	 * Creates a new dictionary entry #GVariant. @key and @value must be
487 	 * non-%NULL. @key must be a value of a basic type (ie: not a container).
488 	 *
489 	 * If the @key or @value are floating references (see g_variant_ref_sink()),
490 	 * the new instance takes ownership of them as if via g_variant_ref_sink().
491 	 *
492 	 * Params:
493 	 *     key = a basic #GVariant, the key
494 	 *     value = a #GVariant, the value
495 	 *
496 	 * Return: a floating reference to a new dictionary entry #GVariant
497 	 *
498 	 * Since: 2.24
499 	 *
500 	 * Throws: ConstructionException GTK+ fails to create the object.
501 	 */
502 	public this(Variant key, Variant value)
503 	{
504 		auto p = g_variant_new_dict_entry((key is null) ? null : key.getVariantStruct(), (value is null) ? null : value.getVariantStruct());
505 		
506 		if(p is null)
507 		{
508 			throw new ConstructionException("null returned by new_dict_entry");
509 		}
510 		
511 		this(cast(GVariant*) p);
512 	}
513 
514 	/**
515 	 * Creates a new double #GVariant instance.
516 	 *
517 	 * Params:
518 	 *     value = a #gdouble floating point value
519 	 *
520 	 * Return: a floating reference to a new double #GVariant instance
521 	 *
522 	 * Since: 2.24
523 	 *
524 	 * Throws: ConstructionException GTK+ fails to create the object.
525 	 */
526 	public this(double value)
527 	{
528 		auto p = g_variant_new_double(value);
529 		
530 		if(p is null)
531 		{
532 			throw new ConstructionException("null returned by new_double");
533 		}
534 		
535 		this(cast(GVariant*) p);
536 	}
537 
538 	/**
539 	 * Provides access to the serialised data for an array of fixed-sized
540 	 * items.
541 	 *
542 	 * @value must be an array with fixed-sized elements.  Numeric types are
543 	 * fixed-size as are tuples containing only other fixed-sized types.
544 	 *
545 	 * @element_size must be the size of a single element in the array.
546 	 * For example, if calling this function for an array of 32-bit integers,
547 	 * you might say sizeof(gint32). This value isn't used except for the purpose
548 	 * of a double-check that the form of the serialised data matches the caller's
549 	 * expectation.
550 	 *
551 	 * @n_elements, which must be non-%NULL is set equal to the number of
552 	 * items in the array.
553 	 *
554 	 * Params:
555 	 *     elementType = the #GVariantType of each element
556 	 *     elements = a pointer to the fixed array of contiguous elements
557 	 *     nElements = the number of elements
558 	 *     elementSize = the size of each element
559 	 *
560 	 * Return: a floating reference to a new array #GVariant instance
561 	 *
562 	 * Since: 2.32
563 	 *
564 	 * Throws: ConstructionException GTK+ fails to create the object.
565 	 */
566 	public this(VariantType elementType, void* elements, size_t nElements, size_t elementSize)
567 	{
568 		auto p = g_variant_new_fixed_array((elementType is null) ? null : elementType.getVariantTypeStruct(), elements, nElements, elementSize);
569 		
570 		if(p is null)
571 		{
572 			throw new ConstructionException("null returned by new_fixed_array");
573 		}
574 		
575 		this(cast(GVariant*) p);
576 	}
577 
578 	/**
579 	 * Constructs a new serialised-mode #GVariant instance.  This is the
580 	 * inner interface for creation of new serialised values that gets
581 	 * called from various functions in gvariant.c.
582 	 *
583 	 * A reference is taken on @bytes.
584 	 *
585 	 * Params:
586 	 *     type = a #GVariantType
587 	 *     bytes = a #GBytes
588 	 *     trusted = if the contents of @bytes are trusted
589 	 *
590 	 * Return: a new #GVariant with a floating reference
591 	 *
592 	 * Since: 2.36
593 	 *
594 	 * Throws: ConstructionException GTK+ fails to create the object.
595 	 */
596 	public this(VariantType type, Bytes bytes, bool trusted)
597 	{
598 		auto p = g_variant_new_from_bytes((type is null) ? null : type.getVariantTypeStruct(), (bytes is null) ? null : bytes.getBytesStruct(), trusted);
599 		
600 		if(p is null)
601 		{
602 			throw new ConstructionException("null returned by new_from_bytes");
603 		}
604 		
605 		this(cast(GVariant*) p);
606 	}
607 
608 	/**
609 	 * Creates a new #GVariant instance from serialised data.
610 	 *
611 	 * @type is the type of #GVariant instance that will be constructed.
612 	 * The interpretation of @data depends on knowing the type.
613 	 *
614 	 * @data is not modified by this function and must remain valid with an
615 	 * unchanging value until such a time as @notify is called with
616 	 * @user_data.  If the contents of @data change before that time then
617 	 * the result is undefined.
618 	 *
619 	 * If @data is trusted to be serialised data in normal form then
620 	 * @trusted should be %TRUE.  This applies to serialised data created
621 	 * within this process or read from a trusted location on the disk (such
622 	 * as a file installed in /usr/lib alongside your application).  You
623 	 * should set trusted to %FALSE if @data is read from the network, a
624 	 * file in the user's home directory, etc.
625 	 *
626 	 * If @data was not stored in this machine's native endianness, any multi-byte
627 	 * numeric values in the returned variant will also be in non-native
628 	 * endianness. g_variant_byteswap() can be used to recover the original values.
629 	 *
630 	 * @notify will be called with @user_data when @data is no longer
631 	 * needed.  The exact time of this call is unspecified and might even be
632 	 * before this function returns.
633 	 *
634 	 * Params:
635 	 *     type = a definite #GVariantType
636 	 *     data = the serialised data
637 	 *     size = the size of @data
638 	 *     trusted = %TRUE if @data is definitely in normal form
639 	 *     notify = function to call when @data is no longer needed
640 	 *     userData = data for @notify
641 	 *
642 	 * Return: a new floating #GVariant of type @type
643 	 *
644 	 * Since: 2.24
645 	 *
646 	 * Throws: ConstructionException GTK+ fails to create the object.
647 	 */
648 	public this(VariantType type, ubyte[] data, bool trusted, GDestroyNotify notify, void* userData)
649 	{
650 		auto p = g_variant_new_from_data((type is null) ? null : type.getVariantTypeStruct(), data.ptr, cast(size_t)data.length, trusted, notify, userData);
651 		
652 		if(p is null)
653 		{
654 			throw new ConstructionException("null returned by new_from_data");
655 		}
656 		
657 		this(cast(GVariant*) p);
658 	}
659 
660 	/**
661 	 * Creates a new int16 #GVariant instance.
662 	 *
663 	 * Params:
664 	 *     value = a #gint16 value
665 	 *
666 	 * Return: a floating reference to a new int16 #GVariant instance
667 	 *
668 	 * Since: 2.24
669 	 *
670 	 * Throws: ConstructionException GTK+ fails to create the object.
671 	 */
672 	public this(short value)
673 	{
674 		auto p = g_variant_new_int16(value);
675 		
676 		if(p is null)
677 		{
678 			throw new ConstructionException("null returned by new_int16");
679 		}
680 		
681 		this(cast(GVariant*) p);
682 	}
683 
684 	/**
685 	 * Creates a new int32 #GVariant instance.
686 	 *
687 	 * Params:
688 	 *     value = a #gint32 value
689 	 *
690 	 * Return: a floating reference to a new int32 #GVariant instance
691 	 *
692 	 * Since: 2.24
693 	 *
694 	 * Throws: ConstructionException GTK+ fails to create the object.
695 	 */
696 	public this(int value)
697 	{
698 		auto p = g_variant_new_int32(value);
699 		
700 		if(p is null)
701 		{
702 			throw new ConstructionException("null returned by new_int32");
703 		}
704 		
705 		this(cast(GVariant*) p);
706 	}
707 
708 	/**
709 	 * Creates a new int64 #GVariant instance.
710 	 *
711 	 * Params:
712 	 *     value = a #gint64 value
713 	 *
714 	 * Return: a floating reference to a new int64 #GVariant instance
715 	 *
716 	 * Since: 2.24
717 	 *
718 	 * Throws: ConstructionException GTK+ fails to create the object.
719 	 */
720 	public this(long value)
721 	{
722 		auto p = g_variant_new_int64(value);
723 		
724 		if(p is null)
725 		{
726 			throw new ConstructionException("null returned by new_int64");
727 		}
728 		
729 		this(cast(GVariant*) p);
730 	}
731 
732 	/**
733 	 * Depending on if @child is %NULL, either wraps @child inside of a
734 	 * maybe container or creates a Nothing instance for the given @type.
735 	 *
736 	 * At least one of @child_type and @child must be non-%NULL.
737 	 * If @child_type is non-%NULL then it must be a definite type.
738 	 * If they are both non-%NULL then @child_type must be the type
739 	 * of @child.
740 	 *
741 	 * If @child is a floating reference (see g_variant_ref_sink()), the new
742 	 * instance takes ownership of @child.
743 	 *
744 	 * Params:
745 	 *     childType = the #GVariantType of the child, or %NULL
746 	 *     child = the child value, or %NULL
747 	 *
748 	 * Return: a floating reference to a new #GVariant maybe instance
749 	 *
750 	 * Since: 2.24
751 	 *
752 	 * Throws: ConstructionException GTK+ fails to create the object.
753 	 */
754 	public this(VariantType childType, Variant child)
755 	{
756 		auto p = g_variant_new_maybe((childType is null) ? null : childType.getVariantTypeStruct(), (child is null) ? null : child.getVariantStruct());
757 		
758 		if(p is null)
759 		{
760 			throw new ConstructionException("null returned by new_maybe");
761 		}
762 		
763 		this(cast(GVariant*) p);
764 	}
765 
766 	/**
767 	 * Parses @format and returns the result.
768 	 *
769 	 * This is the version of g_variant_new_parsed() intended to be used
770 	 * from libraries.
771 	 *
772 	 * The return value will be floating if it was a newly created GVariant
773 	 * instance.  In the case that @format simply specified the collection
774 	 * of a #GVariant pointer (eg: @format was "%*") then the collected
775 	 * #GVariant pointer will be returned unmodified, without adding any
776 	 * additional references.
777 	 *
778 	 * Note that the arguments in @app must be of the correct width for their types
779 	 * specified in @format when collected into the #va_list. See
780 	 * the [GVariant varargs documentation][gvariant-varargs].
781 	 *
782 	 * In order to behave correctly in all cases it is necessary for the
783 	 * calling function to g_variant_ref_sink() the return result before
784 	 * returning control to the user that originally provided the pointer.
785 	 * At this point, the caller will have their own full reference to the
786 	 * result.  This can also be done by adding the result to a container,
787 	 * or by passing it to another g_variant_new() call.
788 	 *
789 	 * Params:
790 	 *     format = a text format #GVariant
791 	 *     app = a pointer to a #va_list
792 	 *
793 	 * Return: a new, usually floating, #GVariant
794 	 *
795 	 * Throws: ConstructionException GTK+ fails to create the object.
796 	 */
797 	public this(string format, void** app)
798 	{
799 		auto p = g_variant_new_parsed_va(Str.toStringz(format), app);
800 		
801 		if(p is null)
802 		{
803 			throw new ConstructionException("null returned by new_parsed_va");
804 		}
805 		
806 		this(cast(GVariant*) p);
807 	}
808 
809 	/**
810 	 * Creates a string #GVariant with the contents of @string.
811 	 *
812 	 * @string must be valid UTF-8, and must not be %NULL. To encode
813 	 * potentially-%NULL strings, use g_variant_new() with `ms` as the
814 	 * [format string][gvariant-format-strings-maybe-types].
815 	 *
816 	 * Params:
817 	 *     str = a normal UTF-8 nul-terminated string
818 	 *
819 	 * Return: a floating reference to a new string #GVariant instance
820 	 *
821 	 * Since: 2.24
822 	 *
823 	 * Throws: ConstructionException GTK+ fails to create the object.
824 	 */
825 	public this(string str)
826 	{
827 		auto p = g_variant_new_string(Str.toStringz(str));
828 		
829 		if(p is null)
830 		{
831 			throw new ConstructionException("null returned by new_string");
832 		}
833 		
834 		this(cast(GVariant*) p);
835 	}
836 
837 	/**
838 	 * Constructs an array of strings #GVariant from the given array of
839 	 * strings.
840 	 *
841 	 * If @length is -1 then @strv is %NULL-terminated.
842 	 *
843 	 * Params:
844 	 *     strv = an array of strings
845 	 *     length = the length of @strv, or -1
846 	 *
847 	 * Return: a new floating #GVariant instance
848 	 *
849 	 * Since: 2.24
850 	 *
851 	 * Throws: ConstructionException GTK+ fails to create the object.
852 	 */
853 	public this(string[] strv)
854 	{
855 		auto p = g_variant_new_strv(Str.toStringzArray(strv), cast(ptrdiff_t)strv.length);
856 		
857 		if(p is null)
858 		{
859 			throw new ConstructionException("null returned by new_strv");
860 		}
861 		
862 		this(cast(GVariant*) p);
863 	}
864 
865 	/**
866 	 * Creates a new tuple #GVariant out of the items in @children.  The
867 	 * type is determined from the types of @children.  No entry in the
868 	 * @children array may be %NULL.
869 	 *
870 	 * If @n_children is 0 then the unit tuple is constructed.
871 	 *
872 	 * If the @children are floating references (see g_variant_ref_sink()), the
873 	 * new instance takes ownership of them as if via g_variant_ref_sink().
874 	 *
875 	 * Params:
876 	 *     children = the items to make the tuple out of
877 	 *     nChildren = the length of @children
878 	 *
879 	 * Return: a floating reference to a new #GVariant tuple
880 	 *
881 	 * Since: 2.24
882 	 *
883 	 * Throws: ConstructionException GTK+ fails to create the object.
884 	 */
885 	public this(Variant[] children)
886 	{
887 		GVariant*[] childrenArray = new GVariant*[children.length];
888 		for ( int i = 0; i < children.length; i++ )
889 		{
890 			childrenArray[i] = children[i].getVariantStruct();
891 		}
892 		
893 		auto p = g_variant_new_tuple(childrenArray.ptr, cast(size_t)children.length);
894 		
895 		if(p is null)
896 		{
897 			throw new ConstructionException("null returned by new_tuple");
898 		}
899 		
900 		this(cast(GVariant*) p);
901 	}
902 
903 	/**
904 	 * Creates a new uint16 #GVariant instance.
905 	 *
906 	 * Params:
907 	 *     value = a #guint16 value
908 	 *
909 	 * Return: a floating reference to a new uint16 #GVariant instance
910 	 *
911 	 * Since: 2.24
912 	 *
913 	 * Throws: ConstructionException GTK+ fails to create the object.
914 	 */
915 	public this(ushort value)
916 	{
917 		auto p = g_variant_new_uint16(value);
918 		
919 		if(p is null)
920 		{
921 			throw new ConstructionException("null returned by new_uint16");
922 		}
923 		
924 		this(cast(GVariant*) p);
925 	}
926 
927 	/**
928 	 * Creates a new uint32 #GVariant instance.
929 	 *
930 	 * Params:
931 	 *     value = a #guint32 value
932 	 *
933 	 * Return: a floating reference to a new uint32 #GVariant instance
934 	 *
935 	 * Since: 2.24
936 	 *
937 	 * Throws: ConstructionException GTK+ fails to create the object.
938 	 */
939 	public this(uint value)
940 	{
941 		auto p = g_variant_new_uint32(value);
942 		
943 		if(p is null)
944 		{
945 			throw new ConstructionException("null returned by new_uint32");
946 		}
947 		
948 		this(cast(GVariant*) p);
949 	}
950 
951 	/**
952 	 * Creates a new uint64 #GVariant instance.
953 	 *
954 	 * Params:
955 	 *     value = a #guint64 value
956 	 *
957 	 * Return: a floating reference to a new uint64 #GVariant instance
958 	 *
959 	 * Since: 2.24
960 	 *
961 	 * Throws: ConstructionException GTK+ fails to create the object.
962 	 */
963 	public this(ulong value)
964 	{
965 		auto p = g_variant_new_uint64(value);
966 		
967 		if(p is null)
968 		{
969 			throw new ConstructionException("null returned by new_uint64");
970 		}
971 		
972 		this(cast(GVariant*) p);
973 	}
974 
975 	/**
976 	 * This function is intended to be used by libraries based on
977 	 * #GVariant that want to provide g_variant_new()-like functionality
978 	 * to their users.
979 	 *
980 	 * The API is more general than g_variant_new() to allow a wider range
981 	 * of possible uses.
982 	 *
983 	 * @format_string must still point to a valid format string, but it only
984 	 * needs to be nul-terminated if @endptr is %NULL.  If @endptr is
985 	 * non-%NULL then it is updated to point to the first character past the
986 	 * end of the format string.
987 	 *
988 	 * @app is a pointer to a #va_list.  The arguments, according to
989 	 * @format_string, are collected from this #va_list and the list is left
990 	 * pointing to the argument following the last.
991 	 *
992 	 * Note that the arguments in @app must be of the correct width for their
993 	 * types specified in @format_string when collected into the #va_list.
994 	 * See the [GVariant varargs documentation][gvariant-varargs.
995 	 *
996 	 * These two generalisations allow mixing of multiple calls to
997 	 * g_variant_new_va() and g_variant_get_va() within a single actual
998 	 * varargs call by the user.
999 	 *
1000 	 * The return value will be floating if it was a newly created GVariant
1001 	 * instance (for example, if the format string was "(ii)").  In the case
1002 	 * that the format_string was '*', '?', 'r', or a format starting with
1003 	 * '@' then the collected #GVariant pointer will be returned unmodified,
1004 	 * without adding any additional references.
1005 	 *
1006 	 * In order to behave correctly in all cases it is necessary for the
1007 	 * calling function to g_variant_ref_sink() the return result before
1008 	 * returning control to the user that originally provided the pointer.
1009 	 * At this point, the caller will have their own full reference to the
1010 	 * result.  This can also be done by adding the result to a container,
1011 	 * or by passing it to another g_variant_new() call.
1012 	 *
1013 	 * Params:
1014 	 *     formatString = a string that is prefixed with a format string
1015 	 *     endptr = location to store the end pointer,
1016 	 *         or %NULL
1017 	 *     app = a pointer to a #va_list
1018 	 *
1019 	 * Return: a new, usually floating, #GVariant
1020 	 *
1021 	 * Since: 2.24
1022 	 *
1023 	 * Throws: ConstructionException GTK+ fails to create the object.
1024 	 */
1025 	public this(string formatString, string[] endptr, void** app)
1026 	{
1027 		auto p = g_variant_new_va(Str.toStringz(formatString), Str.toStringzArray(endptr), app);
1028 		
1029 		if(p is null)
1030 		{
1031 			throw new ConstructionException("null returned by new_va");
1032 		}
1033 		
1034 		this(cast(GVariant*) p);
1035 	}
1036 
1037 	/**
1038 	 * Boxes @value.  The result is a #GVariant instance representing a
1039 	 * variant containing the original value.
1040 	 *
1041 	 * If @child is a floating reference (see g_variant_ref_sink()), the new
1042 	 * instance takes ownership of @child.
1043 	 *
1044 	 * Params:
1045 	 *     value = a #GVariant instance
1046 	 *
1047 	 * Return: a floating reference to a new variant #GVariant instance
1048 	 *
1049 	 * Since: 2.24
1050 	 *
1051 	 * Throws: ConstructionException GTK+ fails to create the object.
1052 	 */
1053 	public this(Variant value)
1054 	{
1055 		auto p = g_variant_new_variant((value is null) ? null : value.getVariantStruct());
1056 		
1057 		if(p is null)
1058 		{
1059 			throw new ConstructionException("null returned by new_variant");
1060 		}
1061 		
1062 		this(cast(GVariant*) p);
1063 	}
1064 
1065 	/**
1066 	 * Performs a byteswapping operation on the contents of @value.  The
1067 	 * result is that all multi-byte numeric data contained in @value is
1068 	 * byteswapped.  That includes 16, 32, and 64bit signed and unsigned
1069 	 * integers as well as file handles and double precision floating point
1070 	 * values.
1071 	 *
1072 	 * This function is an identity mapping on any value that does not
1073 	 * contain multi-byte numeric data.  That include strings, booleans,
1074 	 * bytes and containers containing only these things (recursively).
1075 	 *
1076 	 * The returned value is always in normal form and is marked as trusted.
1077 	 *
1078 	 * Return: the byteswapped form of @value
1079 	 *
1080 	 * Since: 2.24
1081 	 */
1082 	public Variant byteswap()
1083 	{
1084 		auto p = g_variant_byteswap(gVariant);
1085 		
1086 		if(p is null)
1087 		{
1088 			return null;
1089 		}
1090 		
1091 		return new Variant(cast(GVariant*) p);
1092 	}
1093 
1094 	/**
1095 	 * Checks if calling g_variant_get() with @format_string on @value would
1096 	 * be valid from a type-compatibility standpoint.  @format_string is
1097 	 * assumed to be a valid format string (from a syntactic standpoint).
1098 	 *
1099 	 * If @copy_only is %TRUE then this function additionally checks that it
1100 	 * would be safe to call g_variant_unref() on @value immediately after
1101 	 * the call to g_variant_get() without invalidating the result.  This is
1102 	 * only possible if deep copies are made (ie: there are no pointers to
1103 	 * the data inside of the soon-to-be-freed #GVariant instance).  If this
1104 	 * check fails then a g_critical() is printed and %FALSE is returned.
1105 	 *
1106 	 * This function is meant to be used by functions that wish to provide
1107 	 * varargs accessors to #GVariant values of uncertain values (eg:
1108 	 * g_variant_lookup() or g_menu_model_get_item_attribute()).
1109 	 *
1110 	 * Params:
1111 	 *     formatString = a valid #GVariant format string
1112 	 *     copyOnly = %TRUE to ensure the format string makes deep copies
1113 	 *
1114 	 * Return: %TRUE if @format_string is safe to use
1115 	 *
1116 	 * Since: 2.34
1117 	 */
1118 	public bool checkFormatString(string formatString, bool copyOnly)
1119 	{
1120 		return g_variant_check_format_string(gVariant, Str.toStringz(formatString), copyOnly) != 0;
1121 	}
1122 
1123 	/**
1124 	 * Classifies @value according to its top-level type.
1125 	 *
1126 	 * Return: the #GVariantClass of @value
1127 	 *
1128 	 * Since: 2.24
1129 	 */
1130 	public GVariantClass classify()
1131 	{
1132 		return g_variant_classify(gVariant);
1133 	}
1134 
1135 	/**
1136 	 * Compares @one and @two.
1137 	 *
1138 	 * The types of @one and @two are #gconstpointer only to allow use of
1139 	 * this function with #GTree, #GPtrArray, etc.  They must each be a
1140 	 * #GVariant.
1141 	 *
1142 	 * Comparison is only defined for basic types (ie: booleans, numbers,
1143 	 * strings).  For booleans, %FALSE is less than %TRUE.  Numbers are
1144 	 * ordered in the usual way.  Strings are in ASCII lexographical order.
1145 	 *
1146 	 * It is a programmer error to attempt to compare container values or
1147 	 * two values that have types that are not exactly equal.  For example,
1148 	 * you cannot compare a 32-bit signed integer with a 32-bit unsigned
1149 	 * integer.  Also note that this function is not particularly
1150 	 * well-behaved when it comes to comparison of doubles; in particular,
1151 	 * the handling of incomparable values (ie: NaN) is undefined.
1152 	 *
1153 	 * If you only require an equality comparison, g_variant_equal() is more
1154 	 * general.
1155 	 *
1156 	 * Params:
1157 	 *     two = a #GVariant instance of the same type
1158 	 *
1159 	 * Return: negative value if a < b;
1160 	 *     zero if a = b;
1161 	 *     positive value if a > b.
1162 	 *
1163 	 * Since: 2.26
1164 	 */
1165 	public int compare(Variant two)
1166 	{
1167 		return g_variant_compare(gVariant, (two is null) ? null : two.getVariantStruct());
1168 	}
1169 
1170 	/**
1171 	 * Similar to g_variant_get_bytestring() except that instead of
1172 	 * returning a constant string, the string is duplicated.
1173 	 *
1174 	 * The return value must be freed using g_free().
1175 	 *
1176 	 * Return: a newly allocated string
1177 	 *
1178 	 * Since: 2.26
1179 	 */
1180 	public string dupBytestring()
1181 	{
1182 		size_t length;
1183 		
1184 		return Str.toString(g_variant_dup_bytestring(gVariant, &length));
1185 	}
1186 
1187 	/**
1188 	 * Gets the contents of an array of array of bytes #GVariant.  This call
1189 	 * makes a deep copy; the return result should be released with
1190 	 * g_strfreev().
1191 	 *
1192 	 * If @length is non-%NULL then the number of elements in the result is
1193 	 * stored there.  In any case, the resulting array will be
1194 	 * %NULL-terminated.
1195 	 *
1196 	 * For an empty array, @length will be set to 0 and a pointer to a
1197 	 * %NULL pointer will be returned.
1198 	 *
1199 	 * Return: an array of strings
1200 	 *
1201 	 * Since: 2.26
1202 	 */
1203 	public string[] dupBytestringArray()
1204 	{
1205 		size_t length;
1206 		
1207 		return Str.toStringArray(g_variant_dup_bytestring_array(gVariant, &length));
1208 	}
1209 
1210 	/**
1211 	 * Gets the contents of an array of object paths #GVariant.  This call
1212 	 * makes a deep copy; the return result should be released with
1213 	 * g_strfreev().
1214 	 *
1215 	 * If @length is non-%NULL then the number of elements in the result
1216 	 * is stored there.  In any case, the resulting array will be
1217 	 * %NULL-terminated.
1218 	 *
1219 	 * For an empty array, @length will be set to 0 and a pointer to a
1220 	 * %NULL pointer will be returned.
1221 	 *
1222 	 * Return: an array of strings
1223 	 *
1224 	 * Since: 2.30
1225 	 */
1226 	public string[] dupObjv()
1227 	{
1228 		size_t length;
1229 		
1230 		return Str.toStringArray(g_variant_dup_objv(gVariant, &length));
1231 	}
1232 
1233 	/**
1234 	 * Similar to g_variant_get_string() except that instead of returning
1235 	 * a constant string, the string is duplicated.
1236 	 *
1237 	 * The string will always be UTF-8 encoded.
1238 	 *
1239 	 * The return value must be freed using g_free().
1240 	 *
1241 	 * Params:
1242 	 *     length = a pointer to a #gsize, to store the length
1243 	 *
1244 	 * Return: a newly allocated string, UTF-8 encoded
1245 	 *
1246 	 * Since: 2.24
1247 	 */
1248 	public string dupString(out size_t length)
1249 	{
1250 		return Str.toString(g_variant_dup_string(gVariant, &length));
1251 	}
1252 
1253 	/**
1254 	 * Gets the contents of an array of strings #GVariant.  This call
1255 	 * makes a deep copy; the return result should be released with
1256 	 * g_strfreev().
1257 	 *
1258 	 * If @length is non-%NULL then the number of elements in the result
1259 	 * is stored there.  In any case, the resulting array will be
1260 	 * %NULL-terminated.
1261 	 *
1262 	 * For an empty array, @length will be set to 0 and a pointer to a
1263 	 * %NULL pointer will be returned.
1264 	 *
1265 	 * Return: an array of strings
1266 	 *
1267 	 * Since: 2.24
1268 	 */
1269 	public string[] dupStrv()
1270 	{
1271 		size_t length;
1272 		
1273 		return Str.toStringArray(g_variant_dup_strv(gVariant, &length));
1274 	}
1275 
1276 	/**
1277 	 * Checks if @one and @two have the same type and value.
1278 	 *
1279 	 * The types of @one and @two are #gconstpointer only to allow use of
1280 	 * this function with #GHashTable.  They must each be a #GVariant.
1281 	 *
1282 	 * Params:
1283 	 *     two = a #GVariant instance
1284 	 *
1285 	 * Return: %TRUE if @one and @two are equal
1286 	 *
1287 	 * Since: 2.24
1288 	 */
1289 	public bool equal(Variant two)
1290 	{
1291 		return g_variant_equal(gVariant, (two is null) ? null : two.getVariantStruct()) != 0;
1292 	}
1293 
1294 	/**
1295 	 * Returns the boolean value of @value.
1296 	 *
1297 	 * It is an error to call this function with a @value of any type
1298 	 * other than %G_VARIANT_TYPE_BOOLEAN.
1299 	 *
1300 	 * Return: %TRUE or %FALSE
1301 	 *
1302 	 * Since: 2.24
1303 	 */
1304 	public bool getBoolean()
1305 	{
1306 		return g_variant_get_boolean(gVariant) != 0;
1307 	}
1308 
1309 	/**
1310 	 * Returns the byte value of @value.
1311 	 *
1312 	 * It is an error to call this function with a @value of any type
1313 	 * other than %G_VARIANT_TYPE_BYTE.
1314 	 *
1315 	 * Return: a #guchar
1316 	 *
1317 	 * Since: 2.24
1318 	 */
1319 	public char getByte()
1320 	{
1321 		return g_variant_get_byte(gVariant);
1322 	}
1323 
1324 	/**
1325 	 * Returns the string value of a #GVariant instance with an
1326 	 * array-of-bytes type.  The string has no particular encoding.
1327 	 *
1328 	 * If the array does not end with a nul terminator character, the empty
1329 	 * string is returned.  For this reason, you can always trust that a
1330 	 * non-%NULL nul-terminated string will be returned by this function.
1331 	 *
1332 	 * If the array contains a nul terminator character somewhere other than
1333 	 * the last byte then the returned string is the string, up to the first
1334 	 * such nul character.
1335 	 *
1336 	 * It is an error to call this function with a @value that is not an
1337 	 * array of bytes.
1338 	 *
1339 	 * The return value remains valid as long as @value exists.
1340 	 *
1341 	 * Return: the constant string
1342 	 *
1343 	 * Since: 2.26
1344 	 */
1345 	public string getBytestring()
1346 	{
1347 		return Str.toString(g_variant_get_bytestring(gVariant));
1348 	}
1349 
1350 	/**
1351 	 * Gets the contents of an array of array of bytes #GVariant.  This call
1352 	 * makes a shallow copy; the return result should be released with
1353 	 * g_free(), but the individual strings must not be modified.
1354 	 *
1355 	 * If @length is non-%NULL then the number of elements in the result is
1356 	 * stored there.  In any case, the resulting array will be
1357 	 * %NULL-terminated.
1358 	 *
1359 	 * For an empty array, @length will be set to 0 and a pointer to a
1360 	 * %NULL pointer will be returned.
1361 	 *
1362 	 * Return: an array of constant strings
1363 	 *
1364 	 * Since: 2.26
1365 	 */
1366 	public string[] getBytestringArray()
1367 	{
1368 		size_t length;
1369 		
1370 		return Str.toStringArray(g_variant_get_bytestring_array(gVariant, &length));
1371 	}
1372 
1373 	/**
1374 	 * Reads a child item out of a container #GVariant instance.  This
1375 	 * includes variants, maybes, arrays, tuples and dictionary
1376 	 * entries.  It is an error to call this function on any other type of
1377 	 * #GVariant.
1378 	 *
1379 	 * It is an error if @index_ is greater than the number of child items
1380 	 * in the container.  See g_variant_n_children().
1381 	 *
1382 	 * The returned value is never floating.  You should free it with
1383 	 * g_variant_unref() when you're done with it.
1384 	 *
1385 	 * This function is O(1).
1386 	 *
1387 	 * Params:
1388 	 *     index = the index of the child to fetch
1389 	 *
1390 	 * Return: the child at the specified index
1391 	 *
1392 	 * Since: 2.24
1393 	 */
1394 	public Variant getChildValue(size_t index)
1395 	{
1396 		auto p = g_variant_get_child_value(gVariant, index);
1397 		
1398 		if(p is null)
1399 		{
1400 			return null;
1401 		}
1402 		
1403 		return new Variant(cast(GVariant*) p);
1404 	}
1405 
1406 	/**
1407 	 * Returns a pointer to the serialised form of a #GVariant instance.
1408 	 * The returned data may not be in fully-normalised form if read from an
1409 	 * untrusted source.  The returned data must not be freed; it remains
1410 	 * valid for as long as @value exists.
1411 	 *
1412 	 * If @value is a fixed-sized value that was deserialised from a
1413 	 * corrupted serialised container then %NULL may be returned.  In this
1414 	 * case, the proper thing to do is typically to use the appropriate
1415 	 * number of nul bytes in place of @value.  If @value is not fixed-sized
1416 	 * then %NULL is never returned.
1417 	 *
1418 	 * In the case that @value is already in serialised form, this function
1419 	 * is O(1).  If the value is not already in serialised form,
1420 	 * serialisation occurs implicitly and is approximately O(n) in the size
1421 	 * of the result.
1422 	 *
1423 	 * To deserialise the data returned by this function, in addition to the
1424 	 * serialised data, you must know the type of the #GVariant, and (if the
1425 	 * machine might be different) the endianness of the machine that stored
1426 	 * it. As a result, file formats or network messages that incorporate
1427 	 * serialised #GVariants must include this information either
1428 	 * implicitly (for instance "the file always contains a
1429 	 * %G_VARIANT_TYPE_VARIANT and it is always in little-endian order") or
1430 	 * explicitly (by storing the type and/or endianness in addition to the
1431 	 * serialised data).
1432 	 *
1433 	 * Return: the serialised form of @value, or %NULL
1434 	 *
1435 	 * Since: 2.24
1436 	 */
1437 	public void* getData()
1438 	{
1439 		return g_variant_get_data(gVariant);
1440 	}
1441 
1442 	/**
1443 	 * Returns a pointer to the serialised form of a #GVariant instance.
1444 	 * The semantics of this function are exactly the same as
1445 	 * g_variant_get_data(), except that the returned #GBytes holds
1446 	 * a reference to the variant data.
1447 	 *
1448 	 * Return: A new #GBytes representing the variant data
1449 	 *
1450 	 * Since: 2.36
1451 	 */
1452 	public Bytes getDataAsBytes()
1453 	{
1454 		auto p = g_variant_get_data_as_bytes(gVariant);
1455 		
1456 		if(p is null)
1457 		{
1458 			return null;
1459 		}
1460 		
1461 		return new Bytes(cast(GBytes*) p);
1462 	}
1463 
1464 	/**
1465 	 * Returns the double precision floating point value of @value.
1466 	 *
1467 	 * It is an error to call this function with a @value of any type
1468 	 * other than %G_VARIANT_TYPE_DOUBLE.
1469 	 *
1470 	 * Return: a #gdouble
1471 	 *
1472 	 * Since: 2.24
1473 	 */
1474 	public double getDouble()
1475 	{
1476 		return g_variant_get_double(gVariant);
1477 	}
1478 
1479 	/**
1480 	 * Provides access to the serialised data for an array of fixed-sized
1481 	 * items.
1482 	 *
1483 	 * @value must be an array with fixed-sized elements.  Numeric types are
1484 	 * fixed-size, as are tuples containing only other fixed-sized types.
1485 	 *
1486 	 * @element_size must be the size of a single element in the array,
1487 	 * as given by the section on
1488 	 * [serialized data memory][gvariant-serialised-data-memory].
1489 	 *
1490 	 * In particular, arrays of these fixed-sized types can be interpreted
1491 	 * as an array of the given C type, with @element_size set to the size
1492 	 * the appropriate type:
1493 	 * - %G_VARIANT_TYPE_INT16 (etc.): #gint16 (etc.)
1494 	 * - %G_VARIANT_TYPE_BOOLEAN: #guchar (not #gboolean!)
1495 	 * - %G_VARIANT_TYPE_BYTE: #guchar
1496 	 * - %G_VARIANT_TYPE_HANDLE: #guint32
1497 	 * - %G_VARIANT_TYPE_DOUBLE: #gdouble
1498 	 *
1499 	 * For example, if calling this function for an array of 32-bit integers,
1500 	 * you might say sizeof(gint32). This value isn't used except for the purpose
1501 	 * of a double-check that the form of the serialised data matches the caller's
1502 	 * expectation.
1503 	 *
1504 	 * @n_elements, which must be non-%NULL is set equal to the number of
1505 	 * items in the array.
1506 	 *
1507 	 * Params:
1508 	 *     elementSize = the size of each element
1509 	 *
1510 	 * Return: a pointer to
1511 	 *     the fixed array
1512 	 *
1513 	 * Since: 2.24
1514 	 */
1515 	public void[] getFixedArray(size_t elementSize)
1516 	{
1517 		size_t nElements;
1518 		
1519 		auto p = g_variant_get_fixed_array(gVariant, &nElements, elementSize);
1520 		
1521 		return p[0 .. nElements];
1522 	}
1523 
1524 	/**
1525 	 * Returns the 32-bit signed integer value of @value.
1526 	 *
1527 	 * It is an error to call this function with a @value of any type other
1528 	 * than %G_VARIANT_TYPE_HANDLE.
1529 	 *
1530 	 * By convention, handles are indexes into an array of file descriptors
1531 	 * that are sent alongside a D-Bus message.  If you're not interacting
1532 	 * with D-Bus, you probably don't need them.
1533 	 *
1534 	 * Return: a #gint32
1535 	 *
1536 	 * Since: 2.24
1537 	 */
1538 	public int getHandle()
1539 	{
1540 		return g_variant_get_handle(gVariant);
1541 	}
1542 
1543 	/**
1544 	 * Returns the 16-bit signed integer value of @value.
1545 	 *
1546 	 * It is an error to call this function with a @value of any type
1547 	 * other than %G_VARIANT_TYPE_INT16.
1548 	 *
1549 	 * Return: a #gint16
1550 	 *
1551 	 * Since: 2.24
1552 	 */
1553 	public short getInt16()
1554 	{
1555 		return g_variant_get_int16(gVariant);
1556 	}
1557 
1558 	/**
1559 	 * Returns the 32-bit signed integer value of @value.
1560 	 *
1561 	 * It is an error to call this function with a @value of any type
1562 	 * other than %G_VARIANT_TYPE_INT32.
1563 	 *
1564 	 * Return: a #gint32
1565 	 *
1566 	 * Since: 2.24
1567 	 */
1568 	public int getInt32()
1569 	{
1570 		return g_variant_get_int32(gVariant);
1571 	}
1572 
1573 	/**
1574 	 * Returns the 64-bit signed integer value of @value.
1575 	 *
1576 	 * It is an error to call this function with a @value of any type
1577 	 * other than %G_VARIANT_TYPE_INT64.
1578 	 *
1579 	 * Return: a #gint64
1580 	 *
1581 	 * Since: 2.24
1582 	 */
1583 	public long getInt64()
1584 	{
1585 		return g_variant_get_int64(gVariant);
1586 	}
1587 
1588 	/**
1589 	 * Given a maybe-typed #GVariant instance, extract its value.  If the
1590 	 * value is Nothing, then this function returns %NULL.
1591 	 *
1592 	 * Return: the contents of @value, or %NULL
1593 	 *
1594 	 * Since: 2.24
1595 	 */
1596 	public Variant getMaybe()
1597 	{
1598 		auto p = g_variant_get_maybe(gVariant);
1599 		
1600 		if(p is null)
1601 		{
1602 			return null;
1603 		}
1604 		
1605 		return new Variant(cast(GVariant*) p);
1606 	}
1607 
1608 	/**
1609 	 * Gets a #GVariant instance that has the same value as @value and is
1610 	 * trusted to be in normal form.
1611 	 *
1612 	 * If @value is already trusted to be in normal form then a new
1613 	 * reference to @value is returned.
1614 	 *
1615 	 * If @value is not already trusted, then it is scanned to check if it
1616 	 * is in normal form.  If it is found to be in normal form then it is
1617 	 * marked as trusted and a new reference to it is returned.
1618 	 *
1619 	 * If @value is found not to be in normal form then a new trusted
1620 	 * #GVariant is created with the same value as @value.
1621 	 *
1622 	 * It makes sense to call this function if you've received #GVariant
1623 	 * data from untrusted sources and you want to ensure your serialised
1624 	 * output is definitely in normal form.
1625 	 *
1626 	 * Return: a trusted #GVariant
1627 	 *
1628 	 * Since: 2.24
1629 	 */
1630 	public Variant getNormalForm()
1631 	{
1632 		auto p = g_variant_get_normal_form(gVariant);
1633 		
1634 		if(p is null)
1635 		{
1636 			return null;
1637 		}
1638 		
1639 		return new Variant(cast(GVariant*) p);
1640 	}
1641 
1642 	/**
1643 	 * Gets the contents of an array of object paths #GVariant.  This call
1644 	 * makes a shallow copy; the return result should be released with
1645 	 * g_free(), but the individual strings must not be modified.
1646 	 *
1647 	 * If @length is non-%NULL then the number of elements in the result
1648 	 * is stored there.  In any case, the resulting array will be
1649 	 * %NULL-terminated.
1650 	 *
1651 	 * For an empty array, @length will be set to 0 and a pointer to a
1652 	 * %NULL pointer will be returned.
1653 	 *
1654 	 * Return: an array of constant strings
1655 	 *
1656 	 * Since: 2.30
1657 	 */
1658 	public string[] getObjv()
1659 	{
1660 		size_t length;
1661 		
1662 		return Str.toStringArray(g_variant_get_objv(gVariant, &length));
1663 	}
1664 
1665 	/**
1666 	 * Determines the number of bytes that would be required to store @value
1667 	 * with g_variant_store().
1668 	 *
1669 	 * If @value has a fixed-sized type then this function always returned
1670 	 * that fixed size.
1671 	 *
1672 	 * In the case that @value is already in serialised form or the size has
1673 	 * already been calculated (ie: this function has been called before)
1674 	 * then this function is O(1).  Otherwise, the size is calculated, an
1675 	 * operation which is approximately O(n) in the number of values
1676 	 * involved.
1677 	 *
1678 	 * Return: the serialised size of @value
1679 	 *
1680 	 * Since: 2.24
1681 	 */
1682 	public size_t getSize()
1683 	{
1684 		return g_variant_get_size(gVariant);
1685 	}
1686 
1687 	/**
1688 	 * Returns the string value of a #GVariant instance with a string
1689 	 * type.  This includes the types %G_VARIANT_TYPE_STRING,
1690 	 * %G_VARIANT_TYPE_OBJECT_PATH and %G_VARIANT_TYPE_SIGNATURE.
1691 	 *
1692 	 * The string will always be UTF-8 encoded, and will never be %NULL.
1693 	 *
1694 	 * If @length is non-%NULL then the length of the string (in bytes) is
1695 	 * returned there.  For trusted values, this information is already
1696 	 * known.  For untrusted values, a strlen() will be performed.
1697 	 *
1698 	 * It is an error to call this function with a @value of any type
1699 	 * other than those three.
1700 	 *
1701 	 * The return value remains valid as long as @value exists.
1702 	 *
1703 	 * Params:
1704 	 *     length = a pointer to a #gsize,
1705 	 *         to store the length
1706 	 *
1707 	 * Return: the constant string, UTF-8 encoded
1708 	 *
1709 	 * Since: 2.24
1710 	 */
1711 	public string getString(out size_t length)
1712 	{
1713 		return Str.toString(g_variant_get_string(gVariant, &length));
1714 	}
1715 
1716 	/**
1717 	 * Gets the contents of an array of strings #GVariant.  This call
1718 	 * makes a shallow copy; the return result should be released with
1719 	 * g_free(), but the individual strings must not be modified.
1720 	 *
1721 	 * If @length is non-%NULL then the number of elements in the result
1722 	 * is stored there.  In any case, the resulting array will be
1723 	 * %NULL-terminated.
1724 	 *
1725 	 * For an empty array, @length will be set to 0 and a pointer to a
1726 	 * %NULL pointer will be returned.
1727 	 *
1728 	 * Return: an array of constant strings
1729 	 *
1730 	 * Since: 2.24
1731 	 */
1732 	public string[] getStrv()
1733 	{
1734 		size_t length;
1735 		
1736 		return Str.toStringArray(g_variant_get_strv(gVariant, &length));
1737 	}
1738 
1739 	/**
1740 	 * Determines the type of @value.
1741 	 *
1742 	 * The return value is valid for the lifetime of @value and must not
1743 	 * be freed.
1744 	 *
1745 	 * Return: a #GVariantType
1746 	 *
1747 	 * Since: 2.24
1748 	 */
1749 	public VariantType getType()
1750 	{
1751 		auto p = g_variant_get_type(gVariant);
1752 		
1753 		if(p is null)
1754 		{
1755 			return null;
1756 		}
1757 		
1758 		return new VariantType(cast(GVariantType*) p);
1759 	}
1760 
1761 	/**
1762 	 * Returns the type string of @value.  Unlike the result of calling
1763 	 * g_variant_type_peek_string(), this string is nul-terminated.  This
1764 	 * string belongs to #GVariant and must not be freed.
1765 	 *
1766 	 * Return: the type string for the type of @value
1767 	 *
1768 	 * Since: 2.24
1769 	 */
1770 	public string getTypeString()
1771 	{
1772 		return Str.toString(g_variant_get_type_string(gVariant));
1773 	}
1774 
1775 	/**
1776 	 * Returns the 16-bit unsigned integer value of @value.
1777 	 *
1778 	 * It is an error to call this function with a @value of any type
1779 	 * other than %G_VARIANT_TYPE_UINT16.
1780 	 *
1781 	 * Return: a #guint16
1782 	 *
1783 	 * Since: 2.24
1784 	 */
1785 	public ushort getUint16()
1786 	{
1787 		return g_variant_get_uint16(gVariant);
1788 	}
1789 
1790 	/**
1791 	 * Returns the 32-bit unsigned integer value of @value.
1792 	 *
1793 	 * It is an error to call this function with a @value of any type
1794 	 * other than %G_VARIANT_TYPE_UINT32.
1795 	 *
1796 	 * Return: a #guint32
1797 	 *
1798 	 * Since: 2.24
1799 	 */
1800 	public uint getUint32()
1801 	{
1802 		return g_variant_get_uint32(gVariant);
1803 	}
1804 
1805 	/**
1806 	 * Returns the 64-bit unsigned integer value of @value.
1807 	 *
1808 	 * It is an error to call this function with a @value of any type
1809 	 * other than %G_VARIANT_TYPE_UINT64.
1810 	 *
1811 	 * Return: a #guint64
1812 	 *
1813 	 * Since: 2.24
1814 	 */
1815 	public ulong getUint64()
1816 	{
1817 		return g_variant_get_uint64(gVariant);
1818 	}
1819 
1820 	/**
1821 	 * This function is intended to be used by libraries based on #GVariant
1822 	 * that want to provide g_variant_get()-like functionality to their
1823 	 * users.
1824 	 *
1825 	 * The API is more general than g_variant_get() to allow a wider range
1826 	 * of possible uses.
1827 	 *
1828 	 * @format_string must still point to a valid format string, but it only
1829 	 * need to be nul-terminated if @endptr is %NULL.  If @endptr is
1830 	 * non-%NULL then it is updated to point to the first character past the
1831 	 * end of the format string.
1832 	 *
1833 	 * @app is a pointer to a #va_list.  The arguments, according to
1834 	 * @format_string, are collected from this #va_list and the list is left
1835 	 * pointing to the argument following the last.
1836 	 *
1837 	 * These two generalisations allow mixing of multiple calls to
1838 	 * g_variant_new_va() and g_variant_get_va() within a single actual
1839 	 * varargs call by the user.
1840 	 *
1841 	 * @format_string determines the C types that are used for unpacking
1842 	 * the values and also determines if the values are copied or borrowed,
1843 	 * see the section on
1844 	 * [GVariant format strings][gvariant-format-strings-pointers].
1845 	 *
1846 	 * Params:
1847 	 *     formatString = a string that is prefixed with a format string
1848 	 *     endptr = location to store the end pointer,
1849 	 *         or %NULL
1850 	 *     app = a pointer to a #va_list
1851 	 *
1852 	 * Since: 2.24
1853 	 */
1854 	public void getVa(string formatString, string[] endptr, void** app)
1855 	{
1856 		g_variant_get_va(gVariant, Str.toStringz(formatString), Str.toStringzArray(endptr), app);
1857 	}
1858 
1859 	/**
1860 	 * Unboxes @value.  The result is the #GVariant instance that was
1861 	 * contained in @value.
1862 	 *
1863 	 * Return: the item contained in the variant
1864 	 *
1865 	 * Since: 2.24
1866 	 */
1867 	public Variant getVariant()
1868 	{
1869 		auto p = g_variant_get_variant(gVariant);
1870 		
1871 		if(p is null)
1872 		{
1873 			return null;
1874 		}
1875 		
1876 		return new Variant(cast(GVariant*) p);
1877 	}
1878 
1879 	/**
1880 	 * Generates a hash value for a #GVariant instance.
1881 	 *
1882 	 * The output of this function is guaranteed to be the same for a given
1883 	 * value only per-process.  It may change between different processor
1884 	 * architectures or even different versions of GLib.  Do not use this
1885 	 * function as a basis for building protocols or file formats.
1886 	 *
1887 	 * The type of @value is #gconstpointer only to allow use of this
1888 	 * function with #GHashTable.  @value must be a #GVariant.
1889 	 *
1890 	 * Return: a hash value corresponding to @value
1891 	 *
1892 	 * Since: 2.24
1893 	 */
1894 	public uint hash()
1895 	{
1896 		return g_variant_hash(gVariant);
1897 	}
1898 
1899 	/**
1900 	 * Checks if @value is a container.
1901 	 *
1902 	 * Return: %TRUE if @value is a container
1903 	 *
1904 	 * Since: 2.24
1905 	 */
1906 	public bool isContainer()
1907 	{
1908 		return g_variant_is_container(gVariant) != 0;
1909 	}
1910 
1911 	/**
1912 	 * Checks whether @value has a floating reference count.
1913 	 *
1914 	 * This function should only ever be used to assert that a given variant
1915 	 * is or is not floating, or for debug purposes. To acquire a reference
1916 	 * to a variant that might be floating, always use g_variant_ref_sink()
1917 	 * or g_variant_take_ref().
1918 	 *
1919 	 * See g_variant_ref_sink() for more information about floating reference
1920 	 * counts.
1921 	 *
1922 	 * Return: whether @value is floating
1923 	 *
1924 	 * Since: 2.26
1925 	 */
1926 	public bool isFloating()
1927 	{
1928 		return g_variant_is_floating(gVariant) != 0;
1929 	}
1930 
1931 	/**
1932 	 * Checks if @value is in normal form.
1933 	 *
1934 	 * The main reason to do this is to detect if a given chunk of
1935 	 * serialised data is in normal form: load the data into a #GVariant
1936 	 * using g_variant_new_from_data() and then use this function to
1937 	 * check.
1938 	 *
1939 	 * If @value is found to be in normal form then it will be marked as
1940 	 * being trusted.  If the value was already marked as being trusted then
1941 	 * this function will immediately return %TRUE.
1942 	 *
1943 	 * Return: %TRUE if @value is in normal form
1944 	 *
1945 	 * Since: 2.24
1946 	 */
1947 	public bool isNormalForm()
1948 	{
1949 		return g_variant_is_normal_form(gVariant) != 0;
1950 	}
1951 
1952 	/**
1953 	 * Checks if a value has a type matching the provided type.
1954 	 *
1955 	 * Params:
1956 	 *     type = a #GVariantType
1957 	 *
1958 	 * Return: %TRUE if the type of @value matches @type
1959 	 *
1960 	 * Since: 2.24
1961 	 */
1962 	public bool isOfType(VariantType type)
1963 	{
1964 		return g_variant_is_of_type(gVariant, (type is null) ? null : type.getVariantTypeStruct()) != 0;
1965 	}
1966 
1967 	/**
1968 	 * Creates a heap-allocated #GVariantIter for iterating over the items
1969 	 * in @value.
1970 	 *
1971 	 * Use g_variant_iter_free() to free the return value when you no longer
1972 	 * need it.
1973 	 *
1974 	 * A reference is taken to @value and will be released only when
1975 	 * g_variant_iter_free() is called.
1976 	 *
1977 	 * Return: a new heap-allocated #GVariantIter
1978 	 *
1979 	 * Since: 2.24
1980 	 */
1981 	public VariantIter iterNew()
1982 	{
1983 		auto p = g_variant_iter_new(gVariant);
1984 		
1985 		if(p is null)
1986 		{
1987 			return null;
1988 		}
1989 		
1990 		return new VariantIter(cast(GVariantIter*) p);
1991 	}
1992 
1993 	/**
1994 	 * Looks up a value in a dictionary #GVariant.
1995 	 *
1996 	 * This function works with dictionaries of the type a{s*} (and equally
1997 	 * well with type a{o*}, but we only further discuss the string case
1998 	 * for sake of clarity).
1999 	 *
2000 	 * In the event that @dictionary has the type a{sv}, the @expected_type
2001 	 * string specifies what type of value is expected to be inside of the
2002 	 * variant. If the value inside the variant has a different type then
2003 	 * %NULL is returned. In the event that @dictionary has a value type other
2004 	 * than v then @expected_type must directly match the key type and it is
2005 	 * used to unpack the value directly or an error occurs.
2006 	 *
2007 	 * In either case, if @key is not found in @dictionary, %NULL is returned.
2008 	 *
2009 	 * If the key is found and the value has the correct type, it is
2010 	 * returned.  If @expected_type was specified then any non-%NULL return
2011 	 * value will have this type.
2012 	 *
2013 	 * This function is currently implemented with a linear scan.  If you
2014 	 * plan to do many lookups then #GVariantDict may be more efficient.
2015 	 *
2016 	 * Params:
2017 	 *     key = the key to lookup in the dictionary
2018 	 *     expectedType = a #GVariantType, or %NULL
2019 	 *
2020 	 * Return: the value of the dictionary key, or %NULL
2021 	 *
2022 	 * Since: 2.28
2023 	 */
2024 	public Variant lookupValue(string key, VariantType expectedType)
2025 	{
2026 		auto p = g_variant_lookup_value(gVariant, Str.toStringz(key), (expectedType is null) ? null : expectedType.getVariantTypeStruct());
2027 		
2028 		if(p is null)
2029 		{
2030 			return null;
2031 		}
2032 		
2033 		return new Variant(cast(GVariant*) p);
2034 	}
2035 
2036 	/**
2037 	 * Determines the number of children in a container #GVariant instance.
2038 	 * This includes variants, maybes, arrays, tuples and dictionary
2039 	 * entries.  It is an error to call this function on any other type of
2040 	 * #GVariant.
2041 	 *
2042 	 * For variants, the return value is always 1.  For values with maybe
2043 	 * types, it is always zero or one.  For arrays, it is the length of the
2044 	 * array.  For tuples it is the number of tuple items (which depends
2045 	 * only on the type).  For dictionary entries, it is always 2
2046 	 *
2047 	 * This function is O(1).
2048 	 *
2049 	 * Return: the number of children in the container
2050 	 *
2051 	 * Since: 2.24
2052 	 */
2053 	public size_t nChildren()
2054 	{
2055 		return g_variant_n_children(gVariant);
2056 	}
2057 
2058 	/**
2059 	 * Pretty-prints @value in the format understood by g_variant_parse().
2060 	 *
2061 	 * The format is described [here][gvariant-text].
2062 	 *
2063 	 * If @type_annotate is %TRUE, then type information is included in
2064 	 * the output.
2065 	 *
2066 	 * Params:
2067 	 *     typeAnnotate = %TRUE if type information should be included in
2068 	 *         the output
2069 	 *
2070 	 * Return: a newly-allocated string holding the result.
2071 	 *
2072 	 * Since: 2.24
2073 	 */
2074 	public string print(bool typeAnnotate)
2075 	{
2076 		return Str.toString(g_variant_print(gVariant, typeAnnotate));
2077 	}
2078 
2079 	/**
2080 	 * Behaves as g_variant_print(), but operates on a #GString.
2081 	 *
2082 	 * If @string is non-%NULL then it is appended to and returned.  Else,
2083 	 * a new empty #GString is allocated and it is returned.
2084 	 *
2085 	 * Params:
2086 	 *     str = a #GString, or %NULL
2087 	 *     typeAnnotate = %TRUE if type information should be included in
2088 	 *         the output
2089 	 *
2090 	 * Return: a #GString containing the string
2091 	 *
2092 	 * Since: 2.24
2093 	 */
2094 	public StringG printString(StringG str, bool typeAnnotate)
2095 	{
2096 		auto p = g_variant_print_string(gVariant, (str is null) ? null : str.getStringGStruct(), typeAnnotate);
2097 		
2098 		if(p is null)
2099 		{
2100 			return null;
2101 		}
2102 		
2103 		return new StringG(cast(GString*) p);
2104 	}
2105 
2106 	/**
2107 	 * Increases the reference count of @value.
2108 	 *
2109 	 * Return: the same @value
2110 	 *
2111 	 * Since: 2.24
2112 	 */
2113 	public Variant doref()
2114 	{
2115 		auto p = g_variant_ref(gVariant);
2116 		
2117 		if(p is null)
2118 		{
2119 			return null;
2120 		}
2121 		
2122 		return new Variant(cast(GVariant*) p);
2123 	}
2124 
2125 	/**
2126 	 * #GVariant uses a floating reference count system.  All functions with
2127 	 * names starting with `g_variant_new_` return floating
2128 	 * references.
2129 	 *
2130 	 * Calling g_variant_ref_sink() on a #GVariant with a floating reference
2131 	 * will convert the floating reference into a full reference.  Calling
2132 	 * g_variant_ref_sink() on a non-floating #GVariant results in an
2133 	 * additional normal reference being added.
2134 	 *
2135 	 * In other words, if the @value is floating, then this call "assumes
2136 	 * ownership" of the floating reference, converting it to a normal
2137 	 * reference.  If the @value is not floating, then this call adds a
2138 	 * new normal reference increasing the reference count by one.
2139 	 *
2140 	 * All calls that result in a #GVariant instance being inserted into a
2141 	 * container will call g_variant_ref_sink() on the instance.  This means
2142 	 * that if the value was just created (and has only its floating
2143 	 * reference) then the container will assume sole ownership of the value
2144 	 * at that point and the caller will not need to unreference it.  This
2145 	 * makes certain common styles of programming much easier while still
2146 	 * maintaining normal refcounting semantics in situations where values
2147 	 * are not floating.
2148 	 *
2149 	 * Return: the same @value
2150 	 *
2151 	 * Since: 2.24
2152 	 */
2153 	public Variant refSink()
2154 	{
2155 		auto p = g_variant_ref_sink(gVariant);
2156 		
2157 		if(p is null)
2158 		{
2159 			return null;
2160 		}
2161 		
2162 		return new Variant(cast(GVariant*) p);
2163 	}
2164 
2165 	/**
2166 	 * Stores the serialised form of @value at @data.  @data should be
2167 	 * large enough.  See g_variant_get_size().
2168 	 *
2169 	 * The stored data is in machine native byte order but may not be in
2170 	 * fully-normalised form if read from an untrusted source.  See
2171 	 * g_variant_get_normal_form() for a solution.
2172 	 *
2173 	 * As with g_variant_get_data(), to be able to deserialise the
2174 	 * serialised variant successfully, its type and (if the destination
2175 	 * machine might be different) its endianness must also be available.
2176 	 *
2177 	 * This function is approximately O(n) in the size of @data.
2178 	 *
2179 	 * Params:
2180 	 *     data = the location to store the serialised data at
2181 	 *
2182 	 * Since: 2.24
2183 	 */
2184 	public void store(void* data)
2185 	{
2186 		g_variant_store(gVariant, data);
2187 	}
2188 
2189 	/**
2190 	 * If @value is floating, sink it.  Otherwise, do nothing.
2191 	 *
2192 	 * Typically you want to use g_variant_ref_sink() in order to
2193 	 * automatically do the correct thing with respect to floating or
2194 	 * non-floating references, but there is one specific scenario where
2195 	 * this function is helpful.
2196 	 *
2197 	 * The situation where this function is helpful is when creating an API
2198 	 * that allows the user to provide a callback function that returns a
2199 	 * #GVariant.  We certainly want to allow the user the flexibility to
2200 	 * return a non-floating reference from this callback (for the case
2201 	 * where the value that is being returned already exists).
2202 	 *
2203 	 * At the same time, the style of the #GVariant API makes it likely that
2204 	 * for newly-created #GVariant instances, the user can be saved some
2205 	 * typing if they are allowed to return a #GVariant with a floating
2206 	 * reference.
2207 	 *
2208 	 * Using this function on the return value of the user's callback allows
2209 	 * the user to do whichever is more convenient for them.  The caller
2210 	 * will alway receives exactly one full reference to the value: either
2211 	 * the one that was returned in the first place, or a floating reference
2212 	 * that has been converted to a full reference.
2213 	 *
2214 	 * This function has an odd interaction when combined with
2215 	 * g_variant_ref_sink() running at the same time in another thread on
2216 	 * the same #GVariant instance.  If g_variant_ref_sink() runs first then
2217 	 * the result will be that the floating reference is converted to a hard
2218 	 * reference.  If g_variant_take_ref() runs first then the result will
2219 	 * be that the floating reference is converted to a hard reference and
2220 	 * an additional reference on top of that one is added.  It is best to
2221 	 * avoid this situation.
2222 	 *
2223 	 * Return: the same @value
2224 	 */
2225 	public Variant takeRef()
2226 	{
2227 		auto p = g_variant_take_ref(gVariant);
2228 		
2229 		if(p is null)
2230 		{
2231 			return null;
2232 		}
2233 		
2234 		return new Variant(cast(GVariant*) p);
2235 	}
2236 
2237 	/**
2238 	 * Decreases the reference count of @value.  When its reference count
2239 	 * drops to 0, the memory used by the variant is freed.
2240 	 *
2241 	 * Since: 2.24
2242 	 */
2243 	public void unref()
2244 	{
2245 		g_variant_unref(gVariant);
2246 	}
2247 
2248 	/**
2249 	 * Determines if a given string is a valid D-Bus object path.  You
2250 	 * should ensure that a string is a valid D-Bus object path before
2251 	 * passing it to g_variant_new_object_path().
2252 	 *
2253 	 * A valid object path starts with '/' followed by zero or more
2254 	 * sequences of characters separated by '/' characters.  Each sequence
2255 	 * must contain only the characters "[A-Z][a-z][0-9]_".  No sequence
2256 	 * (including the one following the final '/' character) may be empty.
2257 	 *
2258 	 * Params:
2259 	 *     str = a normal C nul-terminated string
2260 	 *
2261 	 * Return: %TRUE if @string is a D-Bus object path
2262 	 *
2263 	 * Since: 2.24
2264 	 */
2265 	public static bool isObjectPath(string str)
2266 	{
2267 		return g_variant_is_object_path(Str.toStringz(str)) != 0;
2268 	}
2269 
2270 	/**
2271 	 * Determines if a given string is a valid D-Bus type signature.  You
2272 	 * should ensure that a string is a valid D-Bus type signature before
2273 	 * passing it to g_variant_new_signature().
2274 	 *
2275 	 * D-Bus type signatures consist of zero or more definite #GVariantType
2276 	 * strings in sequence.
2277 	 *
2278 	 * Params:
2279 	 *     str = a normal C nul-terminated string
2280 	 *
2281 	 * Return: %TRUE if @string is a D-Bus type signature
2282 	 *
2283 	 * Since: 2.24
2284 	 */
2285 	public static bool isSignature(string str)
2286 	{
2287 		return g_variant_is_signature(Str.toStringz(str)) != 0;
2288 	}
2289 
2290 	/**
2291 	 * Parses a #GVariant from a text representation.
2292 	 *
2293 	 * A single #GVariant is parsed from the content of @text.
2294 	 *
2295 	 * The format is described [here][gvariant-text].
2296 	 *
2297 	 * The memory at @limit will never be accessed and the parser behaves as
2298 	 * if the character at @limit is the nul terminator.  This has the
2299 	 * effect of bounding @text.
2300 	 *
2301 	 * If @endptr is non-%NULL then @text is permitted to contain data
2302 	 * following the value that this function parses and @endptr will be
2303 	 * updated to point to the first character past the end of the text
2304 	 * parsed by this function.  If @endptr is %NULL and there is extra data
2305 	 * then an error is returned.
2306 	 *
2307 	 * If @type is non-%NULL then the value will be parsed to have that
2308 	 * type.  This may result in additional parse errors (in the case that
2309 	 * the parsed value doesn't fit the type) but may also result in fewer
2310 	 * errors (in the case that the type would have been ambiguous, such as
2311 	 * with empty arrays).
2312 	 *
2313 	 * In the event that the parsing is successful, the resulting #GVariant
2314 	 * is returned. It is never floating, and must be freed with
2315 	 * g_variant_unref().
2316 	 *
2317 	 * In case of any error, %NULL will be returned.  If @error is non-%NULL
2318 	 * then it will be set to reflect the error that occurred.
2319 	 *
2320 	 * Officially, the language understood by the parser is "any string
2321 	 * produced by g_variant_print()".
2322 	 *
2323 	 * Params:
2324 	 *     type = a #GVariantType, or %NULL
2325 	 *     text = a string containing a GVariant in text form
2326 	 *     limit = a pointer to the end of @text, or %NULL
2327 	 *     endptr = a location to store the end pointer, or %NULL
2328 	 *
2329 	 * Return: a non-floating reference to a #GVariant, or %NULL
2330 	 *
2331 	 * Throws: GException on failure.
2332 	 */
2333 	public static Variant parse(VariantType type, string text, string limit, string[] endptr)
2334 	{
2335 		GError* err = null;
2336 		
2337 		auto p = g_variant_parse((type is null) ? null : type.getVariantTypeStruct(), Str.toStringz(text), Str.toStringz(limit), Str.toStringzArray(endptr), &err);
2338 		
2339 		if (err !is null)
2340 		{
2341 			throw new GException( new ErrorG(err) );
2342 		}
2343 		
2344 		if(p is null)
2345 		{
2346 			return null;
2347 		}
2348 		
2349 		return new Variant(cast(GVariant*) p);
2350 	}
2351 
2352 	/**
2353 	 * Pretty-prints a message showing the context of a #GVariant parse
2354 	 * error within the string for which parsing was attempted.
2355 	 *
2356 	 * The resulting string is suitable for output to the console or other
2357 	 * monospace media where newlines are treated in the usual way.
2358 	 *
2359 	 * The message will typically look something like one of the following:
2360 	 *
2361 	 * |[
2362 	 * unterminated string constant:
2363 	 * (1, 2, 3, 'abc
2364 	 * ^^^^
2365 	 * ]|
2366 	 *
2367 	 * or
2368 	 *
2369 	 * |[
2370 	 * unable to find a common type:
2371 	 * [1, 2, 3, 'str']
2372 	 * ^        ^^^^^
2373 	 * ]|
2374 	 *
2375 	 * The format of the message may change in a future version.
2376 	 *
2377 	 * @error must have come from a failed attempt to g_variant_parse() and
2378 	 * @source_str must be exactly the same string that caused the error.
2379 	 * If @source_str was not nul-terminated when you passed it to
2380 	 * g_variant_parse() then you must add nul termination before using this
2381 	 * function.
2382 	 *
2383 	 * Params:
2384 	 *     error = a #GError from the #GVariantParseError domain
2385 	 *     sourceStr = the string that was given to the parser
2386 	 *
2387 	 * Return: the printed message
2388 	 *
2389 	 * Since: 2.40
2390 	 */
2391 	public static string parseErrorPrintContext(ErrorG error, string sourceStr)
2392 	{
2393 		return Str.toString(g_variant_parse_error_print_context((error is null) ? null : error.getErrorGStruct(), Str.toStringz(sourceStr)));
2394 	}
2395 
2396 	public static GQuark parseErrorQuark()
2397 	{
2398 		return g_variant_parse_error_quark();
2399 	}
2400 
2401 	/**
2402 	 * Same as g_variant_error_quark().
2403 	 *
2404 	 * Deprecated: Use g_variant_parse_error_quark() instead.
2405 	 */
2406 	public static GQuark parserGetErrorQuark()
2407 	{
2408 		return g_variant_parser_get_error_quark();
2409 	}
2410 }