ListStore

The #GtkListStore object is a list model for use with a #GtkTreeView widget. It implements the #GtkTreeModel interface, and consequentialy, can use all of the methods available there. It also implements the #GtkTreeSortable interface so it can be sorted by the view. Finally, it also implements the tree [drag and drop][gtk3-GtkTreeView-drag-and-drop] interfaces.

The #GtkListStore can accept most GObject types as a column type, though it can’t accept all custom types. Internally, it will keep a copy of data passed in (such as a string or a boxed pointer). Columns that accept #GObjects are handled a little differently. The #GtkListStore will keep a reference to the object instead of copying the value. As a result, if the object is modified, it is up to the application writer to call gtk_tree_model_row_changed() to emit the #GtkTreeModel::row_changed signal. This most commonly affects lists with #GdkPixbufs stored.

An example for creating a simple list store: |[<!-- language="C" --> enum { COLUMN_STRING, COLUMN_INT, COLUMN_BOOLEAN, N_COLUMNS };

{ GtkListStore *list_store; GtkTreePath *path; GtkTreeIter iter; gint i;

list_store = gtk_list_store_new (N_COLUMNS, G_TYPE_STRING, G_TYPE_INT, G_TYPE_BOOLEAN);

for (i = 0; i < 10; i++) { gchar *some_data;

some_data = get_some_data (i);

// Add a new row to the model gtk_list_store_append (list_store, &iter); gtk_list_store_set (list_store, &iter, COLUMN_STRING, some_data, COLUMN_INT, i, COLUMN_BOOLEAN, FALSE, -1);

// As the store will keep a copy of the string internally, // we free some_data. g_free (some_data); }

// Modify a particular row path = gtk_tree_path_new_from_string ("4"); gtk_tree_model_get_iter (GTK_TREE_MODEL (list_store), &iter, path); gtk_tree_path_free (path); gtk_list_store_set (list_store, &iter, COLUMN_BOOLEAN, TRUE, -1); } ]|

Performance Considerations

Internally, the #GtkListStore was implemented with a linked list with a tail pointer prior to GTK+ 2.6. As a result, it was fast at data insertion and deletion, and not fast at random data access. The #GtkListStore sets the #GTK_TREE_MODEL_ITERS_PERSIST flag, which means that #GtkTreeIters can be cached while the row exists. Thus, if access to a particular row is needed often and your code is expected to run on older versions of GTK+, it is worth keeping the iter around.

Atomic Operations

It is important to note that only the methods gtk_list_store_insert_with_values() and gtk_list_store_insert_with_valuesv() are atomic, in the sense that the row is being appended to the store and the values filled in in a single operation with regard to #GtkTreeModel signaling. In contrast, using e.g. gtk_list_store_append() and then gtk_list_store_set() will first create a row, which triggers the #GtkTreeModel::row-inserted signal on #GtkListStore. The row, however, is still empty, and any signal handler connecting to #GtkTreeModel::row-inserted on this particular store should be prepared for the situation that the row might be empty. This is especially important if you are wrapping the #GtkListStore inside a #GtkTreeModelFilter and are using a #GtkTreeModelFilterVisibleFunc. Using any of the non-atomic operations to append rows to the #GtkListStore will cause the #GtkTreeModelFilterVisibleFunc to be visited with an empty row first; the function must be prepared for that.

GtkListStore as GtkBuildable

The GtkListStore implementation of the GtkBuildable interface allows to specify the model columns with a <columns> element that may contain multiple <column> elements, each specifying one model column. The “type” attribute specifies the data type for the column.

Additionally, it is possible to specify content for the list store in the UI definition, with the <data> element. It can contain multiple <row> elements, each specifying to content for one row of the list model. Inside a <row>, the <col> elements specify the content for individual cells.

Note that it is probably more common to define your models in the code, and one might consider it a layering violation to specify the content of a list store in a UI definition, data, not presentation, and common wisdom is to separate the two, as far as possible.

An example of a UI Definition fragment for a list store: |[<!-- language="C" --> <object class="GtkListStore"> <columns> <column type="gchararray"/> <column type="gchararray"/> <column type="gint"/> </columns> <data> <row> <col id="0">John</col> <col id="1">Doe</col> <col id="2">25</col> </row> <row> <col id="0">Johan</col> <col id="1">Dahlin</col> <col id="2">50</col> </row> </data> </object> ]|

Constructors

this
this(GtkListStore* gtkListStore, bool ownedRef)

Sets our main struct and passes it to the parent class.

this
this(GType[] types)

Non-vararg creation function. Used primarily by language bindings.

Members

Functions

append
void append(TreeIter iter)

Appends a new row to @list_store. @iter will be changed to point to this new row. The row will be empty after this function is called. To fill in values, you need to call gtk_list_store_set() or gtk_list_store_set_value().

clear
void clear()

Removes all rows from the list store.

createIter
TreeIter createIter()

Creates a top level iteractor. I don't think lists have but the top level iteractor

getListStoreStruct
GtkListStore* getListStoreStruct()

Get the main Gtk struct

getStruct
void* getStruct()

the main Gtk struct as a void*

insert
void insert(TreeIter iter, int position)

Creates a new row at @position. @iter will be changed to point to this new row. If @position is -1 or is larger than the number of rows on the list, then the new row will be appended to the list. The row will be empty after this function is called. To fill in values, you need to call gtk_list_store_set() or gtk_list_store_set_value().

insertAfter
void insertAfter(TreeIter iter, TreeIter sibling)

Inserts a new row after @sibling. If @sibling is %NULL, then the row will be prepended to the beginning of the list. @iter will be changed to point to this new row. The row will be empty after this function is called. To fill in values, you need to call gtk_list_store_set() or gtk_list_store_set_value().

insertBefore
void insertBefore(TreeIter iter, TreeIter sibling)

Inserts a new row before @sibling. If @sibling is %NULL, then the row will be appended to the end of the list. @iter will be changed to point to this new row. The row will be empty after this function is called. To fill in values, you need to call gtk_list_store_set() or gtk_list_store_set_value().

insertWithValuesv
void insertWithValuesv(TreeIter iter, int position, int[] columns, Value[] values)

A variant of gtk_list_store_insert_with_values() which takes the columns and values as two arrays, instead of varargs. This function is mainly intended for language-bindings.

iterIsValid
bool iterIsValid(TreeIter iter)

> This function is slow. Only use it for debugging and/or testing > purposes.

moveAfter
void moveAfter(TreeIter iter, TreeIter position)

Moves @iter in @store to the position after @position. Note that this function only works with unsorted stores. If @position is %NULL, @iter will be moved to the start of the list.

moveBefore
void moveBefore(TreeIter iter, TreeIter position)

Moves @iter in @store to the position before @position. Note that this function only works with unsorted stores. If @position is %NULL, @iter will be moved to the end of the list.

prepend
void prepend(TreeIter iter)

Prepends a new row to @list_store. @iter will be changed to point to this new row. The row will be empty after this function is called. To fill in values, you need to call gtk_list_store_set() or gtk_list_store_set_value().

remove
bool remove(TreeIter iter)

Removes the given row from the list store. After being removed, @iter is set to be the next valid row, or invalidated if it pointed to the last row in @list_store.

reorder
void reorder(int[] newOrder)

Reorders @store to follow the order indicated by @new_order. Note that this function only works with unsorted stores.

set
void set(TreeIter iter, int[] columns, char*[] values)
void set(TreeIter iter, int[] columns, string[] values)

sets the values for one row

setColumnTypes
void setColumnTypes(GType[] types)

This function is meant primarily for #GObjects that inherit from #GtkListStore, and should only be used when constructing a new #GtkListStore. It will not function after a row has been added, or a method on the #GtkTreeModel interface is called.

setStruct
void setStruct(GObject* obj)
Undocumented in source. Be warned that the author may not have intended to support it.
setValist
void setValist(TreeIter iter, void* varArgs)

See gtk_list_store_set(); this version takes a va_list for use by language bindings.

setValue
void setValue(TreeIter iter, int column, string value)
setValue
void setValue(TreeIter iter, int column, int value)
setValue
void setValue(TreeIter iter, int column, Value value)

Sets the data in the cell specified by @iter and @column. The type of @value must be convertible to the type of the column.

setValuesv
void setValuesv(TreeIter iter, int[] columns, Value[] values)

A variant of gtk_list_store_set_valist() which takes the columns and values as two arrays, instead of varargs. This function is mainly intended for language-bindings and in case the number of columns to change is not known until run-time.

swap
void swap(TreeIter a, TreeIter b)

Swaps @a and @b in @store. Note that this function only works with unsorted stores.

Mixins

__anonymous
mixin BuildableT!(GtkListStore)
Undocumented in source.
__anonymous
mixin TreeDragDestT!(GtkListStore)
Undocumented in source.
__anonymous
mixin TreeDragSourceT!(GtkListStore)
Undocumented in source.
__anonymous
mixin TreeModelT!(GtkListStore)
Undocumented in source.
__anonymous
mixin TreeSortableT!(GtkListStore)
Undocumented in source.

Static functions

getType
GType getType()

Variables

gtkListStore
GtkListStore* gtkListStore;

the main Gtk struct

Inherited Members

From ObjectG

gObject
GObject* gObject;

the main Gtk struct

getObjectGStruct
GObject* getObjectGStruct()

Get the main Gtk struct

getStruct
void* getStruct()

the main Gtk struct as a void*

isGcRoot
bool isGcRoot;
Undocumented in source.
destroyNotify
void destroyNotify(ObjectG obj)
Undocumented in source. Be warned that the author may not have intended to support it.
toggleNotify
void toggleNotify(ObjectG obj, GObject* object, int isLastRef)
Undocumented in source. Be warned that the author may not have intended to support it.
~this
~this()
Undocumented in source.
getDObject
RT getDObject(U obj, bool ownedRef)

Gets a D Object from the objects table of associations.

setStruct
void setStruct(GObject* obj)
Undocumented in source. Be warned that the author may not have intended to support it.
setProperty
void setProperty(string propertyName, int value)
setProperty
void setProperty(string propertyName, string value)
setProperty
void setProperty(string propertyName, long value)
setProperty
void setProperty(string propertyName, ulong value)
unref
deprecated void unref(ObjectG obj)
Undocumented in source. Be warned that the author may not have intended to support it.
doref
deprecated ObjectG doref(ObjectG obj)
Undocumented in source. Be warned that the author may not have intended to support it.
connectedSignals
int[string] connectedSignals;
Undocumented in source.
onNotifyListeners
void delegate(ParamSpec, ObjectG)[] onNotifyListeners;
Undocumented in source.
addOnNotify
void addOnNotify(void delegate(ParamSpec, ObjectG) dlg, string property, ConnectFlags connectFlags)

The notify signal is emitted on an object when one of its properties has been changed. Note that getting this signal doesn't guarantee that the value of the property has actually changed, it may also be emitted when the setter for the property is called to reinstate the previous value.

callBackNotify
void callBackNotify(GObject* gobjectStruct, GParamSpec* pspec, ObjectG _objectG)
Undocumented in source. Be warned that the author may not have intended to support it.
getType
GType getType()
compatControl
size_t compatControl(size_t what, void* data)
Undocumented in source. Be warned that the author may not have intended to support it.
interfaceFindProperty
ParamSpec interfaceFindProperty(void* gIface, string propertyName)

Find the #GParamSpec with the given name for an interface. Generally, the interface vtable passed in as @g_iface will be the default vtable from g_type_default_interface_ref(), or, if you know the interface has already been loaded, g_type_default_interface_peek().

interfaceInstallProperty
void interfaceInstallProperty(void* gIface, ParamSpec pspec)

Add a property to an interface; this is only useful for interfaces that are added to GObject-derived types. Adding a property to an interface forces all objects classes with that interface to have a compatible property. The compatible property could be a newly created #GParamSpec, but normally g_object_class_override_property() will be used so that the object class only needs to provide an implementation and inherits the property description, default value, bounds, and so forth from the interface property.

interfaceListProperties
ParamSpec[] interfaceListProperties(void* gIface)

Lists the properties of an interface.Generally, the interface vtable passed in as @g_iface will be the default vtable from g_type_default_interface_ref(), or, if you know the interface has already been loaded, g_type_default_interface_peek().

addToggleRef
void addToggleRef(GToggleNotify notify, void* data)

Increases the reference count of the object by one and sets a callback to be called when all other references to the object are dropped, or when this is already the last reference to the object and another reference is established.

addWeakPointer
void addWeakPointer(void* weakPointerLocation)

Adds a weak reference from weak_pointer to @object to indicate that the pointer located at @weak_pointer_location is only valid during the lifetime of @object. When the @object is finalized, @weak_pointer will be set to %NULL.

bindProperty
Binding bindProperty(string sourceProperty, ObjectG target, string targetProperty, GBindingFlags flags)

Creates a binding between @source_property on @source and @target_property on @target. Whenever the @source_property is changed the @target_property is updated using the same value. For instance:

bindPropertyFull
Binding bindPropertyFull(string sourceProperty, ObjectG target, string targetProperty, GBindingFlags flags, GBindingTransformFunc transformTo, GBindingTransformFunc transformFrom, void* userData, GDestroyNotify notify)

Complete version of g_object_bind_property().

bindPropertyWithClosures
Binding bindPropertyWithClosures(string sourceProperty, ObjectG target, string targetProperty, GBindingFlags flags, Closure transformTo, Closure transformFrom)

Creates a binding between @source_property on @source and @target_property on @target, allowing you to set the transformation functions to be used by the binding.

dupData
void* dupData(string key, GDuplicateFunc dupFunc, void* userData)

This is a variant of g_object_get_data() which returns a 'duplicate' of the value. @dup_func defines the meaning of 'duplicate' in this context, it could e.g. take a reference on a ref-counted object.

dupQdata
void* dupQdata(GQuark quark, GDuplicateFunc dupFunc, void* userData)

This is a variant of g_object_get_qdata() which returns a 'duplicate' of the value. @dup_func defines the meaning of 'duplicate' in this context, it could e.g. take a reference on a ref-counted object.

forceFloating
void forceFloating()

This function is intended for #GObject implementations to re-enforce a floating[floating-ref] object reference. Doing this is seldom required: all #GInitiallyUnowneds are created with a floating reference which usually just needs to be sunken by calling g_object_ref_sink().

freezeNotify
void freezeNotify()

Increases the freeze count on @object. If the freeze count is non-zero, the emission of "notify" signals on @object is stopped. The signals are queued until the freeze count is decreased to zero. Duplicate notifications are squashed so that at most one #GObject::notify signal is emitted for each property modified while the object is frozen.

getData
void* getData(string key)

Gets a named field from the objects table of associations (see g_object_set_data()).

getProperty
void getProperty(string propertyName, Value value)

Gets a property of an object. @value must have been initialized to the expected type of the property (or a type to which the expected type can be transformed) using g_value_init().

getQdata
void* getQdata(GQuark quark)

This function gets back user data pointers stored via g_object_set_qdata().

getValist
void getValist(string firstPropertyName, void* varArgs)

Gets properties of an object.

isFloating
bool isFloating()

Checks whether @object has a floating[floating-ref] reference.

notify
void notify(string propertyName)

Emits a "notify" signal for the property @property_name on @object.

notifyByPspec
void notifyByPspec(ParamSpec pspec)

Emits a "notify" signal for the property specified by @pspec on @object.

doref
ObjectG doref()

Increases the reference count of @object.

refSink
ObjectG refSink()

Increase the reference count of @object, and possibly remove the floating[floating-ref] reference, if @object has a floating reference.

removeToggleRef
void removeToggleRef(GToggleNotify notify, void* data)

Removes a reference added with g_object_add_toggle_ref(). The reference count of the object is decreased by one.

removeWeakPointer
void removeWeakPointer(void* weakPointerLocation)

Removes a weak reference from @object that was previously added using g_object_add_weak_pointer(). The @weak_pointer_location has to match the one used with g_object_add_weak_pointer().

replaceData
bool replaceData(string key, void* oldval, void* newval, GDestroyNotify destroy, GDestroyNotify* oldDestroy)

Compares the user data for the key @key on @object with @oldval, and if they are the same, replaces @oldval with @newval.

replaceQdata
bool replaceQdata(GQuark quark, void* oldval, void* newval, GDestroyNotify destroy, GDestroyNotify* oldDestroy)

Compares the user data for the key @quark on @object with @oldval, and if they are the same, replaces @oldval with @newval.

runDispose
void runDispose()

Releases all references to other objects. This can be used to break reference cycles.

setData
void setData(string key, void* data)

Each object carries around a table of associations from strings to pointers. This function lets you set an association.

setDataFull
void setDataFull(string key, void* data, GDestroyNotify destroy)

Like g_object_set_data() except it adds notification for when the association is destroyed, either by setting it to a different value or when the object is destroyed.

setProperty
void setProperty(string propertyName, Value value)

Sets a property on an object.

setQdata
void setQdata(GQuark quark, void* data)

This sets an opaque, named pointer on an object. The name is specified through a #GQuark (retrived e.g. via g_quark_from_static_string()), and the pointer can be gotten back from the @object with g_object_get_qdata() until the @object is finalized. Setting a previously set user data pointer, overrides (frees) the old pointer set, using #NULL as pointer essentially removes the data stored.

setQdataFull
void setQdataFull(GQuark quark, void* data, GDestroyNotify destroy)

This function works like g_object_set_qdata(), but in addition, a void (*destroy) (gpointer) function may be specified which is called with @data as argument when the @object is finalized, or the data is being overwritten by a call to g_object_set_qdata() with the same @quark.

setValist
void setValist(string firstPropertyName, void* varArgs)

Sets properties on an object.

stealData
void* stealData(string key)

Remove a specified datum from the object's data associations, without invoking the association's destroy handler.

stealQdata
void* stealQdata(GQuark quark)

This function gets back user data pointers stored via g_object_set_qdata() and removes the @data from object without invoking its destroy() function (if any was set). Usually, calling this function is only required to update user data pointers with a destroy notifier, for example: |[<!-- language="C" --> void object_add_to_user_list (GObject *object, const gchar *new_string) { // the quark, naming the object data GQuark quark_string_list = g_quark_from_static_string ("my-string-list"); // retrive the old string list GList *list = g_object_steal_qdata (object, quark_string_list);

thawNotify
void thawNotify()

Reverts the effect of a previous call to g_object_freeze_notify(). The freeze count is decreased on @object and when it reaches zero, queued "notify" signals are emitted.

unref
void unref()

Decreases the reference count of @object. When its reference count drops to 0, the object is finalized (i.e. its memory is freed).

watchClosure
void watchClosure(Closure closure)

This function essentially limits the life time of the @closure to the life time of the object. That is, when the object is finalized, the @closure is invalidated by calling g_closure_invalidate() on it, in order to prevent invocations of the closure with a finalized (nonexisting) object. Also, g_object_ref() and g_object_unref() are added as marshal guards to the @closure, to ensure that an extra reference count is held on @object during invocation of the @closure. Usually, this function will be called on closures that use this @object as closure data.

weakRef
void weakRef(GWeakNotify notify, void* data)

Adds a weak reference callback to an object. Weak references are used for notification when an object is finalized. They are called "weak references" because they allow you to safely hold a pointer to an object without calling g_object_ref() (g_object_ref() adds a strong reference, that is, forces the object to stay alive).

weakUnref
void weakUnref(GWeakNotify notify, void* data)

Removes a weak reference callback to an object.

clearObject
void clearObject(ObjectG objectPtr)

Clears a reference to a #GObject.

From BuildableIF

getBuildableStruct
GtkBuildable* getBuildableStruct()

Get the main Gtk struct

getStruct
void* getStruct()

the main Gtk struct as a void*

addChild
void addChild(Builder builder, ObjectG child, string type)

Adds a child to @buildable. @type is an optional string describing how the child should be added.

constructChild
ObjectG constructChild(Builder builder, string name)

Constructs a child of @buildable with the name @name.

customFinished
void customFinished(Builder builder, ObjectG child, string tagname, void* data)

This is similar to gtk_buildable_parser_finished() but is called once for each custom tag handled by the @buildable.

customTagEnd
void customTagEnd(Builder builder, ObjectG child, string tagname, void** data)

This is called at the end of each custom element handled by the buildable.

customTagStart
bool customTagStart(Builder builder, ObjectG child, string tagname, GMarkupParser parser, void* data)

This is called for each unknown element under <child>.

getInternalChild
ObjectG getInternalChild(Builder builder, string childname)

Get the internal child called @childname of the @buildable object.

buildableGetName
string buildableGetName()

Gets the name of the @buildable object.

parserFinished
void parserFinished(Builder builder)

Called when the builder finishes the parsing of a [GtkBuilder UI definition][BUILDER-UI]. Note that this will be called once for each time gtk_builder_add_from_file() or gtk_builder_add_from_string() is called on a builder.

setBuildableProperty
void setBuildableProperty(Builder builder, string name, Value value)

Sets the property name @name to @value on the @buildable object.

buildableSetName
void buildableSetName(string name)

Sets the name of the @buildable object.

From TreeDragDestIF

getTreeDragDestStruct
GtkTreeDragDest* getTreeDragDestStruct()

Get the main Gtk struct

getStruct
void* getStruct()

the main Gtk struct as a void*

dragDataReceived
bool dragDataReceived(TreePath dest, SelectionData selectionData)

Asks the #GtkTreeDragDest to insert a row before the path @dest, deriving the contents of the row from @selection_data. If @dest is outside the tree so that inserting before it is impossible, %FALSE will be returned. Also, %FALSE may be returned if the new row is not created for some model-specific reason. Should robustly handle a @dest no longer found in the model!

rowDropPossible
bool rowDropPossible(TreePath destPath, SelectionData selectionData)

Determines whether a drop is possible before the given @dest_path, at the same depth as @dest_path. i.e., can we drop the data in @selection_data at that location. @dest_path does not have to exist; the return value will almost certainly be %FALSE if the parent of @dest_path doesn’t exist, though.

From TreeDragSourceIF

getTreeDragSourceStruct
GtkTreeDragSource* getTreeDragSourceStruct()

Get the main Gtk struct

getStruct
void* getStruct()

the main Gtk struct as a void*

dragDataDelete
bool dragDataDelete(TreePath path)

Asks the #GtkTreeDragSource to delete the row at @path, because it was moved somewhere else via drag-and-drop. Returns %FALSE if the deletion fails because @path no longer exists, or for some model-specific reason. Should robustly handle a @path no longer found in the model!

dragDataGet
bool dragDataGet(TreePath path, SelectionData selectionData)

Asks the #GtkTreeDragSource to fill in @selection_data with a representation of the row at @path. @selection_data->target gives the required type of the data. Should robustly handle a @path no longer found in the model!

rowDraggable
bool rowDraggable(TreePath path)

Asks the #GtkTreeDragSource whether a particular row can be used as the source of a DND operation. If the source doesn’t implement this interface, the row is assumed draggable.

getRowDragData
bool getRowDragData(SelectionData selectionData, TreeModelIF treeModel, TreePath path)

Obtains a @tree_model and @path from selection data of target type %GTK_TREE_MODEL_ROW. Normally called from a drag_data_received handler. This function can only be used if @selection_data originates from the same process that’s calling this function, because a pointer to the tree model is being passed around. If you aren’t in the same process, then you'll get memory corruption. In the #GtkTreeDragDest drag_data_received handler, you can assume that selection data of type %GTK_TREE_MODEL_ROW is in from the current process. The returned path must be freed with gtk_tree_path_free().

setRowDragData
bool setRowDragData(SelectionData selectionData, TreeModelIF treeModel, TreePath path)

Sets selection data of target type %GTK_TREE_MODEL_ROW. Normally used in a drag_data_get handler.

From TreeModelIF

getTreeModelStruct
GtkTreeModel* getTreeModelStruct()

Get the main Gtk struct

getStruct
void* getStruct()

the main Gtk struct as a void*

getValueString
string getValueString(TreeIter iter, int column)

Get the value of a column as a char array. this is the same calling getValue and get the string from the value object

getValueInt
int getValueInt(TreeIter iter, int column)

Get the value of a column as a char array. this is the same calling getValue and get the int from the value object

getIter
int getIter(TreeIter iter, TreePath path)

Sets iter to a valid iterator pointing to path.

getValue
Value getValue(TreeIter iter, int column, Value value)

Initializes and sets value to that at column. When done with value, g_value_unset() needs to be called to free any allocated memory.

filterNew
TreeModelIF filterNew(TreePath root)

Creates a new #GtkTreeModel, with @child_model as the child_model and @root as the virtual root.

foreac
void foreac(GtkTreeModelForeachFunc func, void* userData)

Calls func on each node in model in a depth-first fashion.

getColumnType
GType getColumnType(int index)

Returns the type of the column.

getFlags
GtkTreeModelFlags getFlags()

Returns a set of flags supported by this interface.

getIterFirst
bool getIterFirst(TreeIter iter)

Initializes @iter with the first iterator in the tree (the one at the path "0") and returns %TRUE. Returns %FALSE if the tree is empty.

getIterFromString
bool getIterFromString(TreeIter iter, string pathString)

Sets @iter to a valid iterator pointing to @path_string, if it exists. Otherwise, @iter is left invalid and %FALSE is returned.

getNColumns
int getNColumns()

Returns the number of columns supported by @tree_model.

getPath
TreePath getPath(TreeIter iter)

Returns a newly-created #GtkTreePath-struct referenced by @iter.

getStringFromIter
string getStringFromIter(TreeIter iter)

Generates a string representation of the iter.

getValist
void getValist(TreeIter iter, void* varArgs)

See gtk_tree_model_get(), this version takes a va_list for language bindings to use.

iterChildren
bool iterChildren(TreeIter iter, TreeIter parent)

Sets @iter to point to the first child of @parent.

iterHasChild
bool iterHasChild(TreeIter iter)

Returns %TRUE if @iter has children, %FALSE otherwise.

iterNChildren
int iterNChildren(TreeIter iter)

Returns the number of children that @iter has.

iterNext
bool iterNext(TreeIter iter)

Sets @iter to point to the node following it at the current level.

iterNthChild
bool iterNthChild(TreeIter iter, TreeIter parent, int n)

Sets @iter to be the child of @parent, using the given index.

iterParent
bool iterParent(TreeIter iter, TreeIter child)

Sets @iter to be the parent of @child.

iterPrevious
bool iterPrevious(TreeIter iter)

Sets @iter to point to the previous node at the current level.

refNode
void refNode(TreeIter iter)

Lets the tree ref the node.

rowChanged
void rowChanged(TreePath path, TreeIter iter)

Emits the #GtkTreeModel::row-changed signal on @tree_model.

rowDeleted
void rowDeleted(TreePath path)

Emits the #GtkTreeModel::row-deleted signal on @tree_model.

rowHasChildToggled
void rowHasChildToggled(TreePath path, TreeIter iter)

Emits the #GtkTreeModel::row-has-child-toggled signal on @tree_model. This should be called by models after the child state of a node changes.

rowInserted
void rowInserted(TreePath path, TreeIter iter)

Emits the #GtkTreeModel::row-inserted signal on @tree_model.

rowsReordered
void rowsReordered(TreePath path, TreeIter iter, int* newOrder)

Emits the #GtkTreeModel::rows-reordered signal on @tree_model.

rowsReorderedWithLength
void rowsReorderedWithLength(TreePath path, TreeIter iter, int[] newOrder)

Emits the #GtkTreeModel::rows-reordered signal on @tree_model.

sortNewWithModel
TreeModelIF sortNewWithModel()

Creates a new #GtkTreeModel, with @child_model as the child model.

unrefNode
void unrefNode(TreeIter iter)

Lets the tree unref the node.

onRowChangedListeners
void delegate(TreePath, TreeIter, TreeModelIF)[] onRowChangedListeners [@property getter]
Undocumented in source.
addOnRowChanged
void addOnRowChanged(void delegate(TreePath, TreeIter, TreeModelIF) dlg, ConnectFlags connectFlags)

This signal is emitted when a row in the model has changed.

onRowDeletedListeners
void delegate(TreePath, TreeModelIF)[] onRowDeletedListeners [@property getter]
Undocumented in source.
addOnRowDeleted
void addOnRowDeleted(void delegate(TreePath, TreeModelIF) dlg, ConnectFlags connectFlags)

This signal is emitted when a row has been deleted.

onRowHasChildToggledListeners
void delegate(TreePath, TreeIter, TreeModelIF)[] onRowHasChildToggledListeners [@property getter]
Undocumented in source.
addOnRowHasChildToggled
void addOnRowHasChildToggled(void delegate(TreePath, TreeIter, TreeModelIF) dlg, ConnectFlags connectFlags)

This signal is emitted when a row has gotten the first child row or lost its last child row.

onRowInsertedListeners
void delegate(TreePath, TreeIter, TreeModelIF)[] onRowInsertedListeners [@property getter]
Undocumented in source.
addOnRowInserted
void addOnRowInserted(void delegate(TreePath, TreeIter, TreeModelIF) dlg, ConnectFlags connectFlags)

This signal is emitted when a new row has been inserted in the model.

onRowsReorderedListeners
void delegate(TreePath, TreeIter, void*, TreeModelIF)[] onRowsReorderedListeners [@property getter]
Undocumented in source.
addOnRowsReordered
void addOnRowsReordered(void delegate(TreePath, TreeIter, void*, TreeModelIF) dlg, ConnectFlags connectFlags)

This signal is emitted when the children of a node in the #GtkTreeModel have been reordered.

From TreeSortableIF

getTreeSortableStruct
GtkTreeSortable* getTreeSortableStruct()

Get the main Gtk struct

getStruct
void* getStruct()

the main Gtk struct as a void*

getSortColumnId
bool getSortColumnId(int sortColumnId, GtkSortType order)

Fills in @sort_column_id and @order with the current sort column and the order. It returns %TRUE unless the @sort_column_id is %GTK_TREE_SORTABLE_DEFAULT_SORT_COLUMN_ID or %GTK_TREE_SORTABLE_UNSORTED_SORT_COLUMN_ID.

hasDefaultSortFunc
bool hasDefaultSortFunc()

Returns %TRUE if the model has a default sort function. This is used primarily by GtkTreeViewColumns in order to determine if a model can go back to the default state, or not.

setDefaultSortFunc
void setDefaultSortFunc(GtkTreeIterCompareFunc sortFunc, void* userData, GDestroyNotify destroy)

Sets the default comparison function used when sorting to be @sort_func. If the current sort column id of @sortable is %GTK_TREE_SORTABLE_DEFAULT_SORT_COLUMN_ID, then the model will sort using this function.

setSortColumnId
void setSortColumnId(int sortColumnId, GtkSortType order)

Sets the current sort column to be @sort_column_id. The @sortable will resort itself to reflect this change, after emitting a #GtkTreeSortable::sort-column-changed signal. @sort_column_id may either be a regular column id, or one of the following special values:

setSortFunc
void setSortFunc(int sortColumnId, GtkTreeIterCompareFunc sortFunc, void* userData, GDestroyNotify destroy)

Sets the comparison function used when sorting to be @sort_func. If the current sort column id of @sortable is the same as @sort_column_id, then the model will sort using this function.

sortColumnChanged
void sortColumnChanged()

Emits a #GtkTreeSortable::sort-column-changed signal on @sortable.

onSortColumnChangedListeners
void delegate(TreeSortableIF)[] onSortColumnChangedListeners [@property getter]
Undocumented in source.
addOnSortColumnChanged
void addOnSortColumnChanged(void delegate(TreeSortableIF) dlg, ConnectFlags connectFlags)

The ::sort-column-changed signal is emitted when the sort column or sort order of @sortable is changed. The signal is emitted before the contents of @sortable are resorted.

Meta