1 /*
2  * This file is part of gtkD.
3  *
4  * gtkD is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU Lesser General Public License
6  * as published by the Free Software Foundation; either version 3
7  * of the License, or (at your option) any later version, with
8  * some exceptions, please read the COPYING file.
9  *
10  * gtkD is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU Lesser General Public License for more details.
14  *
15  * You should have received a copy of the GNU Lesser General Public License
16  * along with gtkD; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110, USA
18  */
19  
20 // generated automatically - do not change
21 // find conversion definition on APILookup.txt
22 // implement new conversion functionalities on the wrap.utils pakage
23 
24 /*
25  * Conversion parameters:
26  * inFile  = gobject-The-Base-Object-Type.html
27  * outPack = gobject
28  * outFile = ObjectG
29  * strct   = GObject
30  * realStrct=
31  * ctorStrct=
32  * clss    = ObjectG
33  * interf  = 
34  * class Code: Yes
35  * interface Code: No
36  * template for:
37  * extend  = 
38  * implements:
39  * prefixes:
40  * 	- g_object_
41  * 	- g_
42  * omit structs:
43  * 	- GObject
44  * 	- GObjectClass
45  * omit prefixes:
46  * 	- g_weak_ref_
47  * omit code:
48  * omit signals:
49  * 	- notify
50  * imports:
51  * 	- gobject.ObjectG
52  * 	- gobject.ParamSpec
53  * 	- gobject.Value
54  * 	- gobject.Closure
55  * 	- core.memory
56  * 	- glib.Str
57  * 	- gtkc.paths
58  * 	- gtkc.Loader
59  * structWrap:
60  * 	- GClosure* -> Closure
61  * 	- GObject* -> ObjectG
62  * 	- GParamSpec* -> ParamSpec
63  * 	- GValue* -> Value
64  * module aliases:
65  * local aliases:
66  * overrides:
67  */
68 
69 module gobject.ObjectG;
70 
71 public  import gtkc.gobjecttypes;
72 
73 private import gtkc.gobject;
74 private import glib.ConstructionException;
75 private import gobject.ObjectG;
76 
77 private import gobject.Signals;
78 public  import gtkc.gdktypes;
79 private import gobject.ObjectG;
80 private import gobject.ParamSpec;
81 private import gobject.Value;
82 private import gobject.Closure;
83 private import core.memory;
84 private import glib.Str;
85 private import gtkc.paths;
86 private import gtkc.Loader;
87 
88 
89 
90 /**
91  * GObject is the fundamental type providing the common attributes and
92  * methods for all object types in GTK+, Pango and other libraries
93  * based on GObject. The GObject class provides methods for object
94  * construction and destruction, property access methods, and signal
95  * support. Signals are described in detail in Signals(3).
96  *
97  * GInitiallyUnowned is derived from GObject. The only difference between
98  * the two is that the initial reference of a GInitiallyUnowned is flagged
99  * as a floating reference.
100  * This means that it is not specifically claimed to be "owned" by
101  * any code portion. The main motivation for providing floating references is
102  * C convenience. In particular, it allows code to be written as:
103  *
104  * $(DDOC_COMMENT example)
105  *
106  * If container_add_child() will g_object_ref_sink() the
107  * passed in child, no reference of the newly created child is leaked.
108  * Without floating references, container_add_child()
109  * can only g_object_ref() the new child, so to implement this code without
110  * reference leaks, it would have to be written as:
111  *
112  * $(DDOC_COMMENT example)
113  *
114  * The floating reference can be converted into
115  * an ordinary reference by calling g_object_ref_sink().
116  * For already sunken objects (objects that don't have a floating reference
117  * anymore), g_object_ref_sink() is equivalent to g_object_ref() and returns
118  * a new reference.
119  * Since floating references are useful almost exclusively for C convenience,
120  * language bindings that provide automated reference and memory ownership
121  * maintenance (such as smart pointers or garbage collection) should not
122  * expose floating references in their API.
123  *
124  * Some object implementations may need to save an objects floating state
125  * across certain code portions (an example is GtkMenu), to achieve this,
126  * the following sequence can be used:
127  *
128  * $(DDOC_COMMENT example)
129  */
130 public class ObjectG
131 {
132 	
133 	/** the main Gtk struct */
134 	protected GObject* gObject;
135 	
136 	
137 	/** Get the main Gtk struct */
138 	public GObject* getObjectGStruct()
139 	{
140 		return gObject;
141 	}
142 	
143 	
144 	/** the main Gtk struct as a void* */
145 	protected void* getStruct()
146 	{
147 		return cast(void*)gObject;
148 	}
149 	
150 	
151 	protected bool isGcRoot;
152 	
153 	/**
154 	 * Sets our main struct and passes store it on the gobject.
155 	 * Add a gabage collector root to the gtk+ struct so it doesn't get collect
156 	 */
157 	public this (GObject* gObject)
158 	{
159 		this.gObject = gObject;
160 		if ( gObject !is  null )
161 		{
162 			setDataFull("GObject", cast(void*)this, cast(GDestroyNotify)&destroyNotify);
163 			addToggleRef(cast(GToggleNotify)&toggleNotify, cast(void*)this);
164 			
165 			//If the refCount is largeer then 1 toggleNotify isn't called
166 			if (gObject.refCount > 1 && !isGcRoot)
167 			{
168 				GC.addRoot(cast(void*)this);
169 				
170 				isGcRoot = true;
171 			}
172 			
173 			//Remove the floating reference if there is one.
174 			if (isFloating(gObject))
175 			{
176 				refSink(gObject);
177 				unref(gObject);
178 			}
179 			
180 			//When constructed via GtkBuilder set the structs.
181 			if ( getStruct() is null)
182 			{
183 				setStruct(gObject);
184 			}
185 		}
186 	}
187 	
188 	extern(C)
189 	{
190 		static void destroyNotify(ObjectG obj)
191 		{
192 			if ( obj.isGcRoot )
193 			{
194 				GC.removeRoot(cast(void*)obj);
195 				
196 				obj.isGcRoot = false;
197 			}
198 			
199 			obj.gObject = null;
200 		}
201 		
202 		static void toggleNotify(ObjectG obj, GObject* object, int isLastRef)
203 		{
204 			if ( isLastRef && obj.isGcRoot )
205 			{
206 				GC.removeRoot(cast(void*)obj);
207 				
208 				obj.isGcRoot = false;
209 			}
210 			else if ( !obj.isGcRoot )
211 			{
212 				GC.addRoot(cast(void*)obj);
213 				
214 				obj.isGcRoot = true;
215 			}
216 		}
217 	}
218 	
219 	~this()
220 	{
221 		if ( Linker.isLoaded(LIBRARY.GOBJECT) && gObject !is null )
222 		{
223 			unref();
224 		}
225 	}
226 	
227 	/**
228 	 * Gets a D Object from the objects table of associations.
229 	 * Params:
230 	 *  obj = GObject containing the associations.
231 	 * Returns: the D Object if found, or a newly constructed object if no such Object exists.
232 	 */
233 	public static RT getDObject(T, RT=T, U)(U obj)
234 	{
235 		if ( obj is null )
236 		{
237 			return null;
238 		}
239 		
240 		static if ( is(T : ObjectG) )
241 		{
242 			auto p = g_object_get_data(cast(GObject*)obj, Str.toStringz("GObject"));
243 			
244 			if ( p !is null )
245 			{
246 				static if ( is(RT == interface ) )
247 				{
248 					return cast(RT)cast(ObjectG)p;
249 				}
250 				else
251 				{
252 					return cast(RT)p;
253 				}
254 			}
255 			else
256 			{
257 				return new T(obj);
258 			}
259 		}
260 		else
261 		{
262 			return new T(obj);
263 		}
264 	}
265 	
266 	protected void setStruct(GObject* obj)
267 	{
268 		gObject = cast(GObject*)obj;
269 	}
270 	
271 	/** */
272 	public void setProperty(string propertyName, int value)
273 	{
274 		setProperty(propertyName, new Value(value));
275 	}
276 	
277 	/** */
278 	public void setProperty(string propertyName, string value)
279 	{
280 		setProperty(propertyName, new Value(value));
281 	}
282 	
283 	/** */
284 	public void setProperty(string propertyName, long value)
285 	{
286 		//We use g_object_set instead of g_object_set_property, because Value doesn't like longs and ulongs for some reason.
287 		g_object_set( gObject, Str.toStringz(propertyName), value, null);
288 	}
289 	
290 	/** */
291 	public void setProperty(string propertyName, ulong value)
292 	{
293 		g_object_set( gObject, Str.toStringz(propertyName), value, null);
294 	}
295 	
296 	public void unref()
297 	{
298 		unref(gObject);
299 	}
300 	
301 	public ObjectG doref()
302 	{
303 		doref(gObject);
304 		
305 		return this;
306 	}
307 	
308 	int[string] connectedSignals;
309 	
310 	void delegate(ParamSpec, ObjectG)[] onNotifyListeners;
311 	/**
312 	 * The notify signal is emitted on an object when one of its
313 	 * properties has been changed. Note that getting this signal
314 	 * doesn't guarantee that the value of the property has actually
315 	 * changed, it may also be emitted when the setter for the property
316 	 * is called to reinstate the previous value.
317 	 *
318 	 * This signal is typically used to obtain change notification for a
319 	 * single property.
320 	 *
321 	 * It is important to note that you must use
322 	 * canonical parameter names for the property.
323 	 *
324 	 * Params:
325 	 *     dlg          = The callback.
326 	 *     property     = Set this if you only want to receive the signal for a specific property.
327 	 *     connectFlags = The behavior of the signal's connection.
328 	 */
329 	void addOnNotify(void delegate(ParamSpec, ObjectG) dlg, string property = "", ConnectFlags connectFlags=cast(ConnectFlags)0)
330 	{
331 		string signalName;
332 		
333 		if ( property == "" )
334 		{
335 			signalName = "notify";
336 		}
337 		else
338 		{
339 			signalName = "notify::"~ property;
340 		}
341 		
342 		if ( !(signalName in connectedSignals) )
343 		{
344 			Signals.connectData(
345 			getStruct(),
346 			signalName,
347 			cast(GCallback)&callBackNotify,
348 			cast(void*)this,
349 			null,
350 			connectFlags);
351 			connectedSignals[signalName] = 1;
352 		}
353 		onNotifyListeners ~= dlg;
354 	}
355 	extern(C) static void callBackNotify(GObject* gobjectStruct, GParamSpec* pspec, ObjectG _objectG)
356 	{
357 		foreach ( void delegate(ParamSpec, ObjectG) dlg ; _objectG.onNotifyListeners )
358 		{
359 			dlg(ObjectG.getDObject!(ParamSpec)(pspec), _objectG);
360 		}
361 	}
362 	
363 	/**
364 	 */
365 	
366 	/**
367 	 * Installs a new property. This is usually done in the class initializer.
368 	 * Note that it is possible to redefine a property in a derived class,
369 	 * by installing a property with the same name. This can be useful at times,
370 	 * e.g. to change the range of allowed values or the default value.
371 	 * Params:
372 	 * oclass = a GObjectClass
373 	 * propertyId = the id for the new property
374 	 * pspec = the GParamSpec for the new property
375 	 */
376 	public static void classInstallProperty(GObjectClass* oclass, uint propertyId, ParamSpec pspec)
377 	{
378 		// void g_object_class_install_property (GObjectClass *oclass,  guint property_id,  GParamSpec *pspec);
379 		g_object_class_install_property(oclass, propertyId, (pspec is null) ? null : pspec.getParamSpecStruct());
380 	}
381 	
382 	/**
383 	 * Installs new properties from an array of GParamSpecs. This is
384 	 * usually done in the class initializer.
385 	 * The property id of each property is the index of each GParamSpec in
386 	 * the pspecs array.
387 	 * The property id of 0 is treated specially by GObject and it should not
388 	 * be used to store a GParamSpec.
389 	 * This function should be used if you plan to use a static array of
390 	 * GParamSpecs and g_object_notify_by_pspec(). For instance, this
391 	 * Since 2.26
392 	 * Params:
393 	 * oclass = a GObjectClass
394 	 * pspecs = the GParamSpecs array
395 	 * defining the new properties. [array length=n_pspecs]
396 	 */
397 	public static void classInstallProperties(GObjectClass* oclass, ParamSpec[] pspecs)
398 	{
399 		// void g_object_class_install_properties (GObjectClass *oclass,  guint n_pspecs,  GParamSpec **pspecs);
400 		
401 		GParamSpec*[] pspecsArray = new GParamSpec*[pspecs.length];
402 		for ( int i = 0; i < pspecs.length ; i++ )
403 		{
404 			pspecsArray[i] = pspecs[i].getParamSpecStruct();
405 		}
406 		
407 		g_object_class_install_properties(oclass, cast(int) pspecs.length, pspecsArray.ptr);
408 	}
409 	
410 	/**
411 	 * Looks up the GParamSpec for a property of a class.
412 	 * Params:
413 	 * oclass = a GObjectClass
414 	 * propertyName = the name of the property to look up
415 	 * Returns: the GParamSpec for the property, or NULL if the class doesn't have a property of that name. [transfer none]
416 	 */
417 	public static ParamSpec classFindProperty(GObjectClass* oclass, string propertyName)
418 	{
419 		// GParamSpec * g_object_class_find_property (GObjectClass *oclass,  const gchar *property_name);
420 		auto p = g_object_class_find_property(oclass, Str.toStringz(propertyName));
421 		
422 		if(p is null)
423 		{
424 			return null;
425 		}
426 		
427 		return ObjectG.getDObject!(ParamSpec)(cast(GParamSpec*) p);
428 	}
429 	
430 	/**
431 	 * Get an array of GParamSpec* for all properties of a class.
432 	 * Params:
433 	 * oclass = a GObjectClass
434 	 * Returns: an array of GParamSpec* which should be freed after use. [array length=n_properties][transfer container]
435 	 */
436 	public static ParamSpec[] classListProperties(GObjectClass* oclass)
437 	{
438 		// GParamSpec ** g_object_class_list_properties (GObjectClass *oclass,  guint *n_properties);
439 		uint nProperties;
440 		auto p = g_object_class_list_properties(oclass, &nProperties);
441 		
442 		if(p is null)
443 		{
444 			return null;
445 		}
446 		
447 		ParamSpec[] arr = new ParamSpec[nProperties];
448 		for(int i = 0; i < nProperties; i++)
449 		{
450 			arr[i] = ObjectG.getDObject!(ParamSpec)(cast(GParamSpec*) p[i]);
451 		}
452 		
453 		return arr;
454 	}
455 	
456 	/**
457 	 * Registers property_id as referring to a property with the
458 	 * name name in a parent class or in an interface implemented
459 	 * by oclass. This allows this class to override
460 	 * a property implementation in a parent class or to provide
461 	 * the implementation of a property from an interface.
462 	 * Note
463 	 * Internally, overriding is implemented by creating a property of type
464 	 * GParamSpecOverride; generally operations that query the properties of
465 	 * the object class, such as g_object_class_find_property() or
466 	 * g_object_class_list_properties() will return the overridden
467 	 * property. However, in one case, the construct_properties argument of
468 	 * the constructor virtual function, the GParamSpecOverride is passed
469 	 * instead, so that the param_id field of the GParamSpec will be
470 	 * correct. For virtually all uses, this makes no difference. If you
471 	 * need to get the overridden property, you can call
472 	 * g_param_spec_get_redirect_target().
473 	 * Since 2.4
474 	 * Params:
475 	 * oclass = a GObjectClass
476 	 * propertyId = the new property ID
477 	 * name = the name of a property registered in a parent class or
478 	 * in an interface of this class.
479 	 */
480 	public static void classOverrideProperty(GObjectClass* oclass, uint propertyId, string name)
481 	{
482 		// void g_object_class_override_property (GObjectClass *oclass,  guint property_id,  const gchar *name);
483 		g_object_class_override_property(oclass, propertyId, Str.toStringz(name));
484 	}
485 	
486 	/**
487 	 * Add a property to an interface; this is only useful for interfaces
488 	 * that are added to GObject-derived types. Adding a property to an
489 	 * interface forces all objects classes with that interface to have a
490 	 * compatible property. The compatible property could be a newly
491 	 * created GParamSpec, but normally
492 	 * g_object_class_override_property() will be used so that the object
493 	 * class only needs to provide an implementation and inherits the
494 	 * property description, default value, bounds, and so forth from the
495 	 * interface property.
496 	 * This function is meant to be called from the interface's default
497 	 * vtable initialization function (the class_init member of
498 	 * GTypeInfo.) It must not be called after after class_init has
499 	 * been called for any object types implementing this interface.
500 	 * Since 2.4
501 	 * Params:
502 	 * iface = any interface vtable for the interface, or the default
503 	 * vtable for the interface.
504 	 * pspec = the GParamSpec for the new property
505 	 */
506 	public static void interfaceInstallProperty(void* iface, ParamSpec pspec)
507 	{
508 		// void g_object_interface_install_property (gpointer g_iface,  GParamSpec *pspec);
509 		g_object_interface_install_property(iface, (pspec is null) ? null : pspec.getParamSpecStruct());
510 	}
511 	
512 	/**
513 	 * Find the GParamSpec with the given name for an
514 	 * interface. Generally, the interface vtable passed in as g_iface
515 	 * will be the default vtable from g_type_default_interface_ref(), or,
516 	 * if you know the interface has already been loaded,
517 	 * g_type_default_interface_peek().
518 	 * Since 2.4
519 	 * Params:
520 	 * iface = any interface vtable for the interface, or the default
521 	 * vtable for the interface
522 	 * propertyName = name of a property to lookup.
523 	 * Returns: the GParamSpec for the property of the interface with the name property_name, or NULL if no such property exists. [transfer none]
524 	 */
525 	public static ParamSpec interfaceFindProperty(void* iface, string propertyName)
526 	{
527 		// GParamSpec * g_object_interface_find_property (gpointer g_iface,  const gchar *property_name);
528 		auto p = g_object_interface_find_property(iface, Str.toStringz(propertyName));
529 		
530 		if(p is null)
531 		{
532 			return null;
533 		}
534 		
535 		return ObjectG.getDObject!(ParamSpec)(cast(GParamSpec*) p);
536 	}
537 	
538 	/**
539 	 * Lists the properties of an interface.Generally, the interface
540 	 * vtable passed in as g_iface will be the default vtable from
541 	 * g_type_default_interface_ref(), or, if you know the interface has
542 	 * already been loaded, g_type_default_interface_peek().
543 	 * Since 2.4
544 	 * Params:
545 	 * iface = any interface vtable for the interface, or the default
546 	 * vtable for the interface
547 	 * Returns: a pointer to an array of pointers to GParamSpec structures. The paramspecs are owned by GLib, but the array should be freed with g_free() when you are done with it. [array length=n_properties_p][transfer container]
548 	 */
549 	public static ParamSpec[] interfaceListProperties(void* iface)
550 	{
551 		// GParamSpec ** g_object_interface_list_properties (gpointer g_iface,  guint *n_properties_p);
552 		uint nPropertiesP;
553 		auto p = g_object_interface_list_properties(iface, &nPropertiesP);
554 		
555 		if(p is null)
556 		{
557 			return null;
558 		}
559 		
560 		ParamSpec[] arr = new ParamSpec[nPropertiesP];
561 		for(int i = 0; i < nPropertiesP; i++)
562 		{
563 			arr[i] = ObjectG.getDObject!(ParamSpec)(cast(GParamSpec*) p[i]);
564 		}
565 		
566 		return arr;
567 	}
568 	
569 	/**
570 	 * Creates a new instance of a GObject subtype and sets its properties.
571 	 * Construction parameters (see G_PARAM_CONSTRUCT, G_PARAM_CONSTRUCT_ONLY)
572 	 * which are not explicitly specified are set to their default values.
573 	 * Rename to: g_object_new
574 	 * Params:
575 	 * objectType = the type id of the GObject subtype to instantiate
576 	 * parameters = an array of GParameter. [array length=n_parameters]
577 	 * Throws: ConstructionException GTK+ fails to create the object.
578 	 */
579 	public this (GType objectType, GParameter[] parameters)
580 	{
581 		// gpointer g_object_newv (GType object_type,  guint n_parameters,  GParameter *parameters);
582 		auto p = g_object_newv(objectType, cast(int) parameters.length, parameters.ptr);
583 		if(p is null)
584 		{
585 			throw new ConstructionException("null returned by g_object_newv(objectType, cast(int) parameters.length, parameters.ptr)");
586 		}
587 		this(cast(GObject*) p);
588 	}
589 	
590 	/**
591 	 * Increases the reference count of object.
592 	 * Params:
593 	 * object = a GObject. [type GObject.Object]
594 	 * Returns: the same object. [type GObject.Object][transfer none]
595 	 */
596 	public static void* doref(void* object)
597 	{
598 		// gpointer g_object_ref (gpointer object);
599 		return g_object_ref(object);
600 	}
601 	
602 	/**
603 	 * Decreases the reference count of object. When its reference count
604 	 * drops to 0, the object is finalized (i.e. its memory is freed).
605 	 * Params:
606 	 * object = a GObject. [type GObject.Object]
607 	 */
608 	public static void unref(void* object)
609 	{
610 		// void g_object_unref (gpointer object);
611 		g_object_unref(object);
612 	}
613 	
614 	/**
615 	 * Increase the reference count of object, and possibly remove the
616 	 * floating reference, if object
617 	 * has a floating reference.
618 	 * In other words, if the object is floating, then this call "assumes
619 	 * ownership" of the floating reference, converting it to a normal
620 	 * reference by clearing the floating flag while leaving the reference
621 	 * count unchanged. If the object is not floating, then this call
622 	 * adds a new normal reference increasing the reference count by one.
623 	 * Since 2.10
624 	 * Params:
625 	 * object = a GObject. [type GObject.Object]
626 	 * Returns: object. [type GObject.Object][transfer none]
627 	 */
628 	public static void* refSink(void* object)
629 	{
630 		// gpointer g_object_ref_sink (gpointer object);
631 		return g_object_ref_sink(object);
632 	}
633 	
634 	/**
635 	 * Clears a reference to a GObject.
636 	 * object_ptr must not be NULL.
637 	 * If the reference is NULL then this function does nothing.
638 	 * Otherwise, the reference count of the object is decreased and the
639 	 * pointer is set to NULL.
640 	 * This function is threadsafe and modifies the pointer atomically,
641 	 * using memory barriers where needed.
642 	 * A macro is also included that allows this function to be used without
643 	 * pointer casts.
644 	 * Since 2.28
645 	 * Params:
646 	 * objectPtr = a pointer to a GObject reference
647 	 */
648 	public static void clearObject(ref ObjectG objectPtr)
649 	{
650 		// void g_clear_object (volatile GObject **object_ptr);
651 		GObject* outobjectPtr = (objectPtr is null) ? null : objectPtr.getObjectGStruct();
652 		
653 		g_clear_object(&outobjectPtr);
654 		
655 		objectPtr = ObjectG.getDObject!(ObjectG)(outobjectPtr);
656 	}
657 	
658 	/**
659 	 * Checks whether object has a floating
660 	 * reference.
661 	 * Since 2.10
662 	 * Params:
663 	 * object = a GObject. [type GObject.Object]
664 	 * Returns: TRUE if object has a floating reference
665 	 */
666 	public static int isFloating(void* object)
667 	{
668 		// gboolean g_object_is_floating (gpointer object);
669 		return g_object_is_floating(object);
670 	}
671 	
672 	/**
673 	 * This function is intended for GObject implementations to re-enforce a
674 	 * floating object reference.
675 	 * Doing this is seldom required: all
676 	 * GInitiallyUnowneds are created with a floating reference which
677 	 * usually just needs to be sunken by calling g_object_ref_sink().
678 	 * Since 2.10
679 	 */
680 	public void forceFloating()
681 	{
682 		// void g_object_force_floating (GObject *object);
683 		g_object_force_floating(gObject);
684 	}
685 	
686 	/**
687 	 * Adds a weak reference callback to an object. Weak references are
688 	 * used for notification when an object is finalized. They are called
689 	 * "weak references" because they allow you to safely hold a pointer
690 	 * to an object without calling g_object_ref() (g_object_ref() adds a
691 	 * strong reference, that is, forces the object to stay alive).
692 	 * Note that the weak references created by this method are not
693 	 * thread-safe: they cannot safely be used in one thread if the
694 	 * object's last g_object_unref() might happen in another thread.
695 	 * Use GWeakRef if thread-safety is required.
696 	 * Params:
697 	 * notify = callback to invoke before the object is freed
698 	 * data = extra data to pass to notify
699 	 */
700 	public void weakRef(GWeakNotify notify, void* data)
701 	{
702 		// void g_object_weak_ref (GObject *object,  GWeakNotify notify,  gpointer data);
703 		g_object_weak_ref(gObject, notify, data);
704 	}
705 	
706 	/**
707 	 * Removes a weak reference callback to an object.
708 	 * Params:
709 	 * notify = callback to search for
710 	 * data = data to search for
711 	 */
712 	public void weakUnref(GWeakNotify notify, void* data)
713 	{
714 		// void g_object_weak_unref (GObject *object,  GWeakNotify notify,  gpointer data);
715 		g_object_weak_unref(gObject, notify, data);
716 	}
717 	
718 	/**
719 	 * Adds a weak reference from weak_pointer to object to indicate that
720 	 * the pointer located at weak_pointer_location is only valid during
721 	 * the lifetime of object. When the object is finalized,
722 	 * weak_pointer will be set to NULL.
723 	 * Note that as with g_object_weak_ref(), the weak references created by
724 	 * this method are not thread-safe: they cannot safely be used in one
725 	 * thread if the object's last g_object_unref() might happen in another
726 	 * thread. Use GWeakRef if thread-safety is required.
727 	 * Params:
728 	 * weakPointerLocation = The memory address of a pointer. [inout]
729 	 */
730 	public void addWeakPointer(void** weakPointerLocation)
731 	{
732 		// void g_object_add_weak_pointer (GObject *object,  gpointer *weak_pointer_location);
733 		g_object_add_weak_pointer(gObject, weakPointerLocation);
734 	}
735 	
736 	/**
737 	 * Removes a weak reference from object that was previously added
738 	 * using g_object_add_weak_pointer(). The weak_pointer_location has
739 	 * to match the one used with g_object_add_weak_pointer().
740 	 * Params:
741 	 * weakPointerLocation = The memory address of a pointer. [inout]
742 	 */
743 	public void removeWeakPointer(void** weakPointerLocation)
744 	{
745 		// void g_object_remove_weak_pointer (GObject *object,  gpointer *weak_pointer_location);
746 		g_object_remove_weak_pointer(gObject, weakPointerLocation);
747 	}
748 	
749 	/**
750 	 * Increases the reference count of the object by one and sets a
751 	 * callback to be called when all other references to the object are
752 	 * dropped, or when this is already the last reference to the object
753 	 * and another reference is established.
754 	 * This functionality is intended for binding object to a proxy
755 	 * object managed by another memory manager. This is done with two
756 	 * paired references: the strong reference added by
757 	 * g_object_add_toggle_ref() and a reverse reference to the proxy
758 	 * object which is either a strong reference or weak reference.
759 	 * The setup is that when there are no other references to object,
760 	 * only a weak reference is held in the reverse direction from object
761 	 * to the proxy object, but when there are other references held to
762 	 * object, a strong reference is held. The notify callback is called
763 	 * when the reference from object to the proxy object should be
764 	 * toggled from strong to weak (is_last_ref
765 	 * true) or weak to strong (is_last_ref false).
766 	 * Since a (normal) reference must be held to the object before
767 	 * calling g_object_add_toggle_ref(), the initial state of the reverse
768 	 * link is always strong.
769 	 * Multiple toggle references may be added to the same gobject,
770 	 * however if there are multiple toggle references to an object, none
771 	 * of them will ever be notified until all but one are removed. For
772 	 * this reason, you should only ever use a toggle reference if there
773 	 * is important state in the proxy object.
774 	 * Since 2.8
775 	 * Params:
776 	 * notify = a function to call when this reference is the
777 	 * last reference to the object, or is no longer
778 	 * the last reference.
779 	 * data = data to pass to notify
780 	 */
781 	public void addToggleRef(GToggleNotify notify, void* data)
782 	{
783 		// void g_object_add_toggle_ref (GObject *object,  GToggleNotify notify,  gpointer data);
784 		g_object_add_toggle_ref(gObject, notify, data);
785 	}
786 	
787 	/**
788 	 * Removes a reference added with g_object_add_toggle_ref(). The
789 	 * reference count of the object is decreased by one.
790 	 * Since 2.8
791 	 * Params:
792 	 * notify = a function to call when this reference is the
793 	 * last reference to the object, or is no longer
794 	 * the last reference.
795 	 * data = data to pass to notify
796 	 */
797 	public void removeToggleRef(GToggleNotify notify, void* data)
798 	{
799 		// void g_object_remove_toggle_ref (GObject *object,  GToggleNotify notify,  gpointer data);
800 		g_object_remove_toggle_ref(gObject, notify, data);
801 	}
802 	
803 	/**
804 	 * Emits a "notify" signal for the property property_name on object.
805 	 * When possible, eg. when signaling a property change from within the class
806 	 * that registered the property, you should use g_object_notify_by_pspec()
807 	 * instead.
808 	 * Params:
809 	 * propertyName = the name of a property installed on the class of object.
810 	 */
811 	public void notify(string propertyName)
812 	{
813 		// void g_object_notify (GObject *object,  const gchar *property_name);
814 		g_object_notify(gObject, Str.toStringz(propertyName));
815 	}
816 	
817 	/**
818 	 * Emits a "notify" signal for the property specified by pspec on object.
819 	 * This function omits the property name lookup, hence it is faster than
820 	 * g_object_notify().
821 	 * One way to avoid using g_object_notify() from within the
822 	 * class that registered the properties, and using g_object_notify_by_pspec()
823 	 * instead, is to store the GParamSpec used with
824 	 * Since 2.26
825 	 * Params:
826 	 * pspec = the GParamSpec of a property installed on the class of object.
827 	 */
828 	public void notifyByPspec(ParamSpec pspec)
829 	{
830 		// void g_object_notify_by_pspec (GObject *object,  GParamSpec *pspec);
831 		g_object_notify_by_pspec(gObject, (pspec is null) ? null : pspec.getParamSpecStruct());
832 	}
833 	
834 	/**
835 	 * Increases the freeze count on object. If the freeze count is
836 	 * non-zero, the emission of "notify" signals on object is
837 	 * stopped. The signals are queued until the freeze count is decreased
838 	 * to zero. Duplicate notifications are squashed so that at most one
839 	 * "notify" signal is emitted for each property modified while the
840 	 * object is frozen.
841 	 * This is necessary for accessors that modify multiple properties to prevent
842 	 * premature notification while the object is still being modified.
843 	 */
844 	public void freezeNotify()
845 	{
846 		// void g_object_freeze_notify (GObject *object);
847 		g_object_freeze_notify(gObject);
848 	}
849 	
850 	/**
851 	 * Reverts the effect of a previous call to
852 	 * g_object_freeze_notify(). The freeze count is decreased on object
853 	 * and when it reaches zero, queued "notify" signals are emitted.
854 	 * Duplicate notifications for each property are squashed so that at most one
855 	 * "notify" signal is emitted for each property.
856 	 * It is an error to call this function when the freeze count is zero.
857 	 */
858 	public void thawNotify()
859 	{
860 		// void g_object_thaw_notify (GObject *object);
861 		g_object_thaw_notify(gObject);
862 	}
863 	
864 	/**
865 	 * Gets a named field from the objects table of associations (see g_object_set_data()).
866 	 * Params:
867 	 * key = name of the key for that association
868 	 * Returns: the data if found, or NULL if no such data exists. [transfer none]
869 	 */
870 	public void* getData(string key)
871 	{
872 		// gpointer g_object_get_data (GObject *object,  const gchar *key);
873 		return g_object_get_data(gObject, Str.toStringz(key));
874 	}
875 	
876 	/**
877 	 * Each object carries around a table of associations from
878 	 * strings to pointers. This function lets you set an association.
879 	 * If the object already had an association with that name,
880 	 * the old association will be destroyed.
881 	 * Params:
882 	 * key = name of the key
883 	 * data = data to associate with that key
884 	 */
885 	public void setData(string key, void* data)
886 	{
887 		// void g_object_set_data (GObject *object,  const gchar *key,  gpointer data);
888 		g_object_set_data(gObject, Str.toStringz(key), data);
889 	}
890 	
891 	/**
892 	 * Like g_object_set_data() except it adds notification
893 	 * for when the association is destroyed, either by setting it
894 	 * to a different value or when the object is destroyed.
895 	 * Note that the destroy callback is not called if data is NULL.
896 	 * Params:
897 	 * key = name of the key
898 	 * data = data to associate with that key
899 	 * destroy = function to call when the association is destroyed
900 	 */
901 	public void setDataFull(string key, void* data, GDestroyNotify destroy)
902 	{
903 		// void g_object_set_data_full (GObject *object,  const gchar *key,  gpointer data,  GDestroyNotify destroy);
904 		g_object_set_data_full(gObject, Str.toStringz(key), data, destroy);
905 	}
906 	
907 	/**
908 	 * Remove a specified datum from the object's data associations,
909 	 * without invoking the association's destroy handler.
910 	 * Params:
911 	 * key = name of the key
912 	 * Returns: the data if found, or NULL if no such data exists. [transfer full]
913 	 */
914 	public void* stealData(string key)
915 	{
916 		// gpointer g_object_steal_data (GObject *object,  const gchar *key);
917 		return g_object_steal_data(gObject, Str.toStringz(key));
918 	}
919 	
920 	/**
921 	 * This is a variant of g_object_get_data() which returns
922 	 * a 'duplicate' of the value. dup_func defines the
923 	 * meaning of 'duplicate' in this context, it could e.g.
924 	 * take a reference on a ref-counted object.
925 	 * If the key is not set on the object then dup_func
926 	 * will be called with a NULL argument.
927 	 * Note that dup_func is called while user data of object
928 	 * is locked.
929 	 * This function can be useful to avoid races when multiple
930 	 * threads are using object data on the same key on the same
931 	 * object.
932 	 * Since 2.34
933 	 * Params:
934 	 * key = a string, naming the user data pointer
935 	 * dupFunc = function to dup the value. [allow-none]
936 	 * userData = passed as user_data to dup_func. [allow-none]
937 	 * Returns: the result of calling dup_func on the value associated with key on object, or NULL if not set. If dup_func is NULL, the value is returned unmodified.
938 	 */
939 	public void* dupData(string key, GDuplicateFunc dupFunc, void* userData)
940 	{
941 		// gpointer g_object_dup_data (GObject *object,  const gchar *key,  GDuplicateFunc dup_func,  gpointer user_data);
942 		return g_object_dup_data(gObject, Str.toStringz(key), dupFunc, userData);
943 	}
944 	
945 	/**
946 	 * Compares the user data for the key key on object with
947 	 * oldval, and if they are the same, replaces oldval with
948 	 * newval.
949 	 * This is like a typical atomic compare-and-exchange
950 	 * operation, for user data on an object.
951 	 * If the previous value was replaced then ownership of the
952 	 * old value (oldval) is passed to the caller, including
953 	 * the registered destroy notify for it (passed out in old_destroy).
954 	 * Its up to the caller to free this as he wishes, which may
955 	 * or may not include using old_destroy as sometimes replacement
956 	 * should not destroy the object in the normal way.
957 	 * Return: TRUE if the existing value for key was replaced
958 	 *  by newval, FALSE otherwise.
959 	 * Since 2.34
960 	 * Params:
961 	 * key = a string, naming the user data pointer
962 	 * oldval = the old value to compare against. [allow-none]
963 	 * newval = the new value. [allow-none]
964 	 * destroy = a destroy notify for the new value. [allow-none]
965 	 * oldDestroy = destroy notify for the existing value. [allow-none]
966 	 */
967 	public int replaceData(string key, void* oldval, void* newval, GDestroyNotify destroy, GDestroyNotify* oldDestroy)
968 	{
969 		// gboolean g_object_replace_data (GObject *object,  const gchar *key,  gpointer oldval,  gpointer newval,  GDestroyNotify destroy,  GDestroyNotify *old_destroy);
970 		return g_object_replace_data(gObject, Str.toStringz(key), oldval, newval, destroy, oldDestroy);
971 	}
972 	
973 	/**
974 	 * This function gets back user data pointers stored via
975 	 * g_object_set_qdata().
976 	 * Params:
977 	 * quark = A GQuark, naming the user data pointer
978 	 * Returns: The user data pointer set, or NULL. [transfer none]
979 	 */
980 	public void* getQdata(GQuark quark)
981 	{
982 		// gpointer g_object_get_qdata (GObject *object,  GQuark quark);
983 		return g_object_get_qdata(gObject, quark);
984 	}
985 	
986 	/**
987 	 * This sets an opaque, named pointer on an object.
988 	 * The name is specified through a GQuark (retrived e.g. via
989 	 * g_quark_from_static_string()), and the pointer
990 	 * can be gotten back from the object with g_object_get_qdata()
991 	 * until the object is finalized.
992 	 * Setting a previously set user data pointer, overrides (frees)
993 	 * the old pointer set, using NULL as pointer essentially
994 	 * removes the data stored.
995 	 * Params:
996 	 * quark = A GQuark, naming the user data pointer
997 	 * data = An opaque user data pointer
998 	 */
999 	public void setQdata(GQuark quark, void* data)
1000 	{
1001 		// void g_object_set_qdata (GObject *object,  GQuark quark,  gpointer data);
1002 		g_object_set_qdata(gObject, quark, data);
1003 	}
1004 	
1005 	/**
1006 	 * This function works like g_object_set_qdata(), but in addition,
1007 	 * a void (*destroy) (gpointer) function may be specified which is
1008 	 * called with data as argument when the object is finalized, or
1009 	 * the data is being overwritten by a call to g_object_set_qdata()
1010 	 * with the same quark.
1011 	 * Params:
1012 	 * quark = A GQuark, naming the user data pointer
1013 	 * data = An opaque user data pointer
1014 	 * destroy = Function to invoke with data as argument, when data
1015 	 * needs to be freed
1016 	 */
1017 	public void setQdataFull(GQuark quark, void* data, GDestroyNotify destroy)
1018 	{
1019 		// void g_object_set_qdata_full (GObject *object,  GQuark quark,  gpointer data,  GDestroyNotify destroy);
1020 		g_object_set_qdata_full(gObject, quark, data, destroy);
1021 	}
1022 	
1023 	/**
1024 	 * This function gets back user data pointers stored via
1025 	 * g_object_set_qdata() and removes the data from object
1026 	 * without invoking its destroy() function (if any was
1027 	 * set).
1028 	 * Usually, calling this function is only required to update
1029 	 * Params:
1030 	 * quark = A GQuark, naming the user data pointer
1031 	 * Returns: The user data pointer set, or NULL. [transfer full]
1032 	 */
1033 	public void* stealQdata(GQuark quark)
1034 	{
1035 		// gpointer g_object_steal_qdata (GObject *object,  GQuark quark);
1036 		return g_object_steal_qdata(gObject, quark);
1037 	}
1038 	
1039 	/**
1040 	 * This is a variant of g_object_get_qdata() which returns
1041 	 * a 'duplicate' of the value. dup_func defines the
1042 	 * meaning of 'duplicate' in this context, it could e.g.
1043 	 * take a reference on a ref-counted object.
1044 	 * If the quark is not set on the object then dup_func
1045 	 * will be called with a NULL argument.
1046 	 * Note that dup_func is called while user data of object
1047 	 * is locked.
1048 	 * This function can be useful to avoid races when multiple
1049 	 * threads are using object data on the same key on the same
1050 	 * object.
1051 	 * Since 2.34
1052 	 * Params:
1053 	 * quark = a GQuark, naming the user data pointer
1054 	 * dupFunc = function to dup the value. [allow-none]
1055 	 * userData = passed as user_data to dup_func. [allow-none]
1056 	 * Returns: the result of calling dup_func on the value associated with quark on object, or NULL if not set. If dup_func is NULL, the value is returned unmodified.
1057 	 */
1058 	public void* dupQdata(GQuark quark, GDuplicateFunc dupFunc, void* userData)
1059 	{
1060 		// gpointer g_object_dup_qdata (GObject *object,  GQuark quark,  GDuplicateFunc dup_func,  gpointer user_data);
1061 		return g_object_dup_qdata(gObject, quark, dupFunc, userData);
1062 	}
1063 	
1064 	/**
1065 	 * Compares the user data for the key quark on object with
1066 	 * oldval, and if they are the same, replaces oldval with
1067 	 * newval.
1068 	 * This is like a typical atomic compare-and-exchange
1069 	 * operation, for user data on an object.
1070 	 * If the previous value was replaced then ownership of the
1071 	 * old value (oldval) is passed to the caller, including
1072 	 * the registered destroy notify for it (passed out in old_destroy).
1073 	 * Its up to the caller to free this as he wishes, which may
1074 	 * or may not include using old_destroy as sometimes replacement
1075 	 * should not destroy the object in the normal way.
1076 	 * Return: TRUE if the existing value for quark was replaced
1077 	 *  by newval, FALSE otherwise.
1078 	 * Since 2.34
1079 	 * Params:
1080 	 * quark = a GQuark, naming the user data pointer
1081 	 * oldval = the old value to compare against. [allow-none]
1082 	 * newval = the new value. [allow-none]
1083 	 * destroy = a destroy notify for the new value. [allow-none]
1084 	 * oldDestroy = destroy notify for the existing value. [allow-none]
1085 	 */
1086 	public int replaceQdata(GQuark quark, void* oldval, void* newval, GDestroyNotify destroy, GDestroyNotify* oldDestroy)
1087 	{
1088 		// gboolean g_object_replace_qdata (GObject *object,  GQuark quark,  gpointer oldval,  gpointer newval,  GDestroyNotify destroy,  GDestroyNotify *old_destroy);
1089 		return g_object_replace_qdata(gObject, quark, oldval, newval, destroy, oldDestroy);
1090 	}
1091 	
1092 	/**
1093 	 * Sets a property on an object.
1094 	 * Params:
1095 	 * propertyName = the name of the property to set
1096 	 * value = the value
1097 	 */
1098 	public void setProperty(string propertyName, Value value)
1099 	{
1100 		// void g_object_set_property (GObject *object,  const gchar *property_name,  const GValue *value);
1101 		g_object_set_property(gObject, Str.toStringz(propertyName), (value is null) ? null : value.getValueStruct());
1102 	}
1103 	
1104 	/**
1105 	 * Gets a property of an object. value must have been initialized to the
1106 	 * expected type of the property (or a type to which the expected type can be
1107 	 * transformed) using g_value_init().
1108 	 * In general, a copy is made of the property contents and the caller is
1109 	 * responsible for freeing the memory by calling g_value_unset().
1110 	 * Note that g_object_get_property() is really intended for language
1111 	 * bindings, g_object_get() is much more convenient for C programming.
1112 	 * Params:
1113 	 * propertyName = the name of the property to get
1114 	 * value = return location for the property value
1115 	 */
1116 	public void getProperty(string propertyName, Value value)
1117 	{
1118 		// void g_object_get_property (GObject *object,  const gchar *property_name,  GValue *value);
1119 		g_object_get_property(gObject, Str.toStringz(propertyName), (value is null) ? null : value.getValueStruct());
1120 	}
1121 	
1122 	/**
1123 	 * Creates a new instance of a GObject subtype and sets its properties.
1124 	 * Construction parameters (see G_PARAM_CONSTRUCT, G_PARAM_CONSTRUCT_ONLY)
1125 	 * which are not explicitly specified are set to their default values.
1126 	 * Params:
1127 	 * objectType = the type id of the GObject subtype to instantiate
1128 	 * firstPropertyName = the name of the first property
1129 	 * varArgs = the value of the first property, followed optionally by more
1130 	 * name/value pairs, followed by NULL
1131 	 * Throws: ConstructionException GTK+ fails to create the object.
1132 	 */
1133 	public this (GType objectType, string firstPropertyName, void* varArgs)
1134 	{
1135 		// GObject * g_object_new_valist (GType object_type,  const gchar *first_property_name,  va_list var_args);
1136 		auto p = g_object_new_valist(objectType, Str.toStringz(firstPropertyName), varArgs);
1137 		if(p is null)
1138 		{
1139 			throw new ConstructionException("null returned by g_object_new_valist(objectType, Str.toStringz(firstPropertyName), varArgs)");
1140 		}
1141 		this(cast(GObject*) p);
1142 	}
1143 	
1144 	/**
1145 	 * Sets properties on an object.
1146 	 * Params:
1147 	 * firstPropertyName = name of the first property to set
1148 	 * varArgs = value for the first property, followed optionally by more
1149 	 * name/value pairs, followed by NULL
1150 	 */
1151 	public void setValist(string firstPropertyName, void* varArgs)
1152 	{
1153 		// void g_object_set_valist (GObject *object,  const gchar *first_property_name,  va_list var_args);
1154 		g_object_set_valist(gObject, Str.toStringz(firstPropertyName), varArgs);
1155 	}
1156 	
1157 	/**
1158 	 * Gets properties of an object.
1159 	 * In general, a copy is made of the property contents and the caller
1160 	 * is responsible for freeing the memory in the appropriate manner for
1161 	 * the type, for instance by calling g_free() or g_object_unref().
1162 	 * See g_object_get().
1163 	 * Params:
1164 	 * firstPropertyName = name of the first property to get
1165 	 * varArgs = return location for the first property, followed optionally by more
1166 	 * name/return location pairs, followed by NULL
1167 	 */
1168 	public void getValist(string firstPropertyName, void* varArgs)
1169 	{
1170 		// void g_object_get_valist (GObject *object,  const gchar *first_property_name,  va_list var_args);
1171 		g_object_get_valist(gObject, Str.toStringz(firstPropertyName), varArgs);
1172 	}
1173 	
1174 	/**
1175 	 * This function essentially limits the life time of the closure to
1176 	 * the life time of the object. That is, when the object is finalized,
1177 	 * the closure is invalidated by calling g_closure_invalidate() on
1178 	 * it, in order to prevent invocations of the closure with a finalized
1179 	 * (nonexisting) object. Also, g_object_ref() and g_object_unref() are
1180 	 * added as marshal guards to the closure, to ensure that an extra
1181 	 * reference count is held on object during invocation of the
1182 	 * closure. Usually, this function will be called on closures that
1183 	 * use this object as closure data.
1184 	 * Params:
1185 	 * closure = GClosure to watch
1186 	 */
1187 	public void watchClosure(Closure closure)
1188 	{
1189 		// void g_object_watch_closure (GObject *object,  GClosure *closure);
1190 		g_object_watch_closure(gObject, (closure is null) ? null : closure.getClosureStruct());
1191 	}
1192 	
1193 	/**
1194 	 * Releases all references to other objects. This can be used to break
1195 	 * reference cycles.
1196 	 * This functions should only be called from object system implementations.
1197 	 */
1198 	public void runDispose()
1199 	{
1200 		// void g_object_run_dispose (GObject *object);
1201 		g_object_run_dispose(gObject);
1202 	}
1203 }