1 /*
2  * This file is part of gtkD.
3  *
4  * gtkD is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU Lesser General Public License
6  * as published by the Free Software Foundation; either version 3
7  * of the License, or (at your option) any later version, with
8  * some exceptions, please read the COPYING file.
9  *
10  * gtkD is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU Lesser General Public License for more details.
14  *
15  * You should have received a copy of the GNU Lesser General Public License
16  * along with gtkD; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110, USA
18  */
19  
20 // generated automatically - do not change
21 // find conversion definition on APILookup.txt
22 // implement new conversion functionalities on the wrap.utils pakage
23 
24 /*
25  * Conversion parameters:
26  * inFile  = glib-GVariant.html
27  * outPack = glib
28  * outFile = Variant
29  * strct   = GVariant
30  * realStrct=
31  * ctorStrct=
32  * clss    = Variant
33  * interf  = 
34  * class Code: Yes
35  * interface Code: No
36  * template for:
37  * extend  = 
38  * implements:
39  * prefixes:
40  * 	- g_variant_
41  * omit structs:
42  * omit prefixes:
43  * 	- g_variant_iter_
44  * 	- g_variant_builder_
45  * omit code:
46  * 	- g_variant_new_boolean
47  * 	- g_variant_new_bytestring_array
48  * 	- g_variant_new_object_path
49  * 	- g_variant_new_signature
50  * 	- g_variant_new_objv
51  * 	- g_variant_new_bytestring
52  * 	- g_variant_new_handle
53  * 	- g_variant_new_take_string
54  * omit signals:
55  * imports:
56  * 	- glib.Str
57  * 	- glib.ErrorG
58  * 	- glib.GException
59  * 	- glib.Bytes
60  * 	- glib.StringG
61  * 	- glib.VariantType
62  * structWrap:
63  * 	- GBytes* -> Bytes
64  * 	- GString* -> StringG
65  * 	- GVariant* -> Variant
66  * 	- GVariantType* -> VariantType
67  * module aliases:
68  * local aliases:
69  * 	- byte -> b
70  * overrides:
71  */
72 
73 module glib.Variant;
74 
75 public  import gtkc.glibtypes;
76 
77 private import gtkc.glib;
78 private import glib.ConstructionException;
79 
80 
81 private import glib.Str;
82 private import glib.ErrorG;
83 private import glib.GException;
84 private import glib.Bytes;
85 private import glib.StringG;
86 private import glib.VariantType;
87 
88 
89 
90 
91 /**
92  * GVariant is a variant datatype; it stores a value along with
93  * information about the type of that value. The range of possible
94  * values is determined by the type. The type system used by GVariant
95  * is GVariantType.
96  *
97  * GVariant instances always have a type and a value (which are given
98  * at construction time). The type and value of a GVariant instance
99  * can never change other than by the GVariant itself being
100  * destroyed. A GVariant cannot contain a pointer.
101  *
102  * GVariant is reference counted using g_variant_ref() and
103  * g_variant_unref(). GVariant also has floating reference counts --
104  * see g_variant_ref_sink().
105  *
106  * GVariant is completely threadsafe. A GVariant instance can be
107  * concurrently accessed in any way from any number of threads without
108  * problems.
109  *
110  * GVariant is heavily optimised for dealing with data in serialised
111  * form. It works particularly well with data located in memory-mapped
112  * files. It can perform nearly all deserialisation operations in a
113  * small constant time, usually touching only a single memory page.
114  * Serialised GVariant data can also be sent over the network.
115  *
116  * GVariant is largely compatible with D-Bus. Almost all types of
117  * GVariant instances can be sent over D-Bus. See GVariantType for
118  * exceptions. (However, GVariant's serialisation format is not the same
119  * as the serialisation format of a D-Bus message body: use GDBusMessage,
120  * in the gio library, for those.)
121  *
122  * For space-efficiency, the GVariant serialisation format does not
123  * automatically include the variant's type or endianness, which must
124  * either be implied from context (such as knowledge that a particular
125  * file format always contains a little-endian G_VARIANT_TYPE_VARIANT)
126  * or supplied out-of-band (for instance, a type and/or endianness
127  * indicator could be placed at the beginning of a file, network message
128  * or network stream).
129  *
130  * A GVariant's size is limited mainly by any lower level operating
131  * system constraints, such as the number of bits in gsize. For
132  * example, it is reasonable to have a 2GB file mapped into memory
133  * with GMappedFile, and call g_variant_new_from_data() on it.
134  *
135  * For convenience to C programmers, GVariant features powerful
136  * varargs-based value construction and destruction. This feature is
137  * designed to be embedded in other libraries.
138  *
139  * There is a Python-inspired text language for describing GVariant
140  * values. GVariant includes a printer for this language and a parser
141  * with type inferencing.
142  *
143  * Memory Use
144  *
145  *  GVariant tries to be quite efficient with respect to memory use.
146  *  This section gives a rough idea of how much memory is used by the
147  *  current implementation. The information here is subject to change
148  *  in the future.
149  *
150  *  The memory allocated by GVariant can be grouped into 4 broad
151  *  purposes: memory for serialised data, memory for the type
152  *  information cache, buffer management memory and memory for the
153  *  GVariant structure itself.
154  *
155  * Serialised Data Memory
156  *
157  *  This is the memory that is used for storing GVariant data in
158  *  serialised form. This is what would be sent over the network or
159  *  what would end up on disk.
160  *
161  *  The amount of memory required to store a boolean is 1 byte. 16,
162  *  32 and 64 bit integers and double precision floating point numbers
163  *  use their "natural" size. Strings (including object path and
164  *  signature strings) are stored with a nul terminator, and as such
165  *  use the length of the string plus 1 byte.
166  *
167  *  Maybe types use no space at all to represent the null value and
168  *  use the same amount of space (sometimes plus one byte) as the
169  *  equivalent non-maybe-typed value to represent the non-null case.
170  *
171  *  Arrays use the amount of space required to store each of their
172  *  members, concatenated. Additionally, if the items stored in an
173  *  array are not of a fixed-size (ie: strings, other arrays, etc)
174  *  then an additional framing offset is stored for each item. The
175  *  size of this offset is either 1, 2 or 4 bytes depending on the
176  *  overall size of the container. Additionally, extra padding bytes
177  *  are added as required for alignment of child values.
178  *
179  *  Tuples (including dictionary entries) use the amount of space
180  *  required to store each of their members, concatenated, plus one
181  *  framing offset (as per arrays) for each non-fixed-sized item in
182  *  the tuple, except for the last one. Additionally, extra padding
183  *  bytes are added as required for alignment of child values.
184  *
185  *  Variants use the same amount of space as the item inside of the
186  *  variant, plus 1 byte, plus the length of the type string for the
187  *  item inside the variant.
188  *
189  *  As an example, consider a dictionary mapping strings to variants.
190  *  In the case that the dictionary is empty, 0 bytes are required for
191  *  the serialisation.
192  *
193  *  If we add an item "width" that maps to the int32 value of 500 then
194  *  we will use 4 byte to store the int32 (so 6 for the variant
195  *  containing it) and 6 bytes for the string. The variant must be
196  *  aligned to 8 after the 6 bytes of the string, so that's 2 extra
197  *  bytes. 6 (string) + 2 (padding) + 6 (variant) is 14 bytes used
198  *  for the dictionary entry. An additional 1 byte is added to the
199  *  array as a framing offset making a total of 15 bytes.
200  *
201  *  If we add another entry, "title" that maps to a nullable string
202  *  that happens to have a value of null, then we use 0 bytes for the
203  *  null value (and 3 bytes for the variant to contain it along with
204  *  its type string) plus 6 bytes for the string. Again, we need 2
205  *  padding bytes. That makes a total of 6 + 2 + 3 = 11 bytes.
206  *
207  *  We now require extra padding between the two items in the array.
208  *  After the 14 bytes of the first item, that's 2 bytes required. We
209  *  now require 2 framing offsets for an extra two bytes. 14 + 2 + 11
210  *  + 2 = 29 bytes to encode the entire two-item dictionary.
211  *
212  * Type Information Cache
213  *
214  *  For each GVariant type that currently exists in the program a type
215  *  information structure is kept in the type information cache. The
216  *  type information structure is required for rapid deserialisation.
217  *
218  *  Continuing with the above example, if a GVariant exists with the
219  *  type "a{sv}" then a type information struct will exist for
220  *  "a{sv}", "{sv}", "s", and "v". Multiple uses of the same type
221  *  will share the same type information. Additionally, all
222  *  single-digit types are stored in read-only static memory and do
223  *  not contribute to the writable memory footprint of a program using
224  *  GVariant.
225  *
226  *  Aside from the type information structures stored in read-only
227  *  memory, there are two forms of type information. One is used for
228  *  container types where there is a single element type: arrays and
229  *  maybe types. The other is used for container types where there
230  *  are multiple element types: tuples and dictionary entries.
231  *
232  *  Array type info structures are 6 * sizeof (void *), plus the
233  *  memory required to store the type string itself. This means that
234  *  on 32bit systems, the cache entry for "a{sv}" would require 30
235  *  bytes of memory (plus malloc overhead).
236  *
237  *  Tuple type info structures are 6 * sizeof (void *), plus 4 *
238  *  sizeof (void *) for each item in the tuple, plus the memory
239  *  required to store the type string itself. A 2-item tuple, for
240  *  example, would have a type information structure that consumed
241  *  writable memory in the size of 14 * sizeof (void *) (plus type
242  *  string) This means that on 32bit systems, the cache entry for
243  *  "{sv}" would require 61 bytes of memory (plus malloc overhead).
244  *
245  *  This means that in total, for our "a{sv}" example, 91 bytes of
246  *  type information would be allocated.
247  *
248  *  The type information cache, additionally, uses a GHashTable to
249  *  store and lookup the cached items and stores a pointer to this
250  *  hash table in static storage. The hash table is freed when there
251  *  are zero items in the type cache.
252  *
253  *  Although these sizes may seem large it is important to remember
254  *  that a program will probably only have a very small number of
255  *  different types of values in it and that only one type information
256  *  structure is required for many different values of the same type.
257  *
258  * Buffer Management Memory
259  *
260  *  GVariant uses an internal buffer management structure to deal
261  *  with the various different possible sources of serialised data
262  *  that it uses. The buffer is responsible for ensuring that the
263  *  correct call is made when the data is no longer in use by
264  *  GVariant. This may involve a g_free() or a g_slice_free() or
265  *  even g_mapped_file_unref().
266  *
267  *  One buffer management structure is used for each chunk of
268  *  serialised data. The size of the buffer management structure is 4
269  *  * (void *). On 32bit systems, that's 16 bytes.
270  *
271  * GVariant structure
272  *
273  *  The size of a GVariant structure is 6 * (void *). On 32 bit
274  *  systems, that's 24 bytes.
275  *
276  *  GVariant structures only exist if they are explicitly created
277  *  with API calls. For example, if a GVariant is constructed out of
278  *  serialised data for the example given above (with the dictionary)
279  *  then although there are 9 individual values that comprise the
280  *  entire dictionary (two keys, two values, two variants containing
281  *  the values, two dictionary entries, plus the dictionary itself),
282  *  only 1 GVariant instance exists -- the one referring to the
283  *  dictionary.
284  *
285  *  If calls are made to start accessing the other values then
286  *  GVariant instances will exist for those values only for as long
287  *  as they are in use (ie: until you call g_variant_unref()). The
288  *  type information is shared. The serialised data and the buffer
289  *  management structure for that serialised data is shared by the
290  *  child.
291  *
292  * Summary
293  *
294  *  To put the entire example together, for our dictionary mapping
295  *  strings to variants (with two entries, as given above), we are
296  *  using 91 bytes of memory for type information, 29 byes of memory
297  *  for the serialised data, 16 bytes for buffer management and 24
298  *  bytes for the GVariant instance, or a total of 160 bytes, plus
299  *  malloc overhead. If we were to use g_variant_get_child_value() to
300  *  access the two dictionary entries, we would use an additional 48
301  *  bytes. If we were to have other dictionaries of the same type, we
302  *  would use more memory for the serialised data and buffer
303  *  management for those dictionaries, but the type information would
304  *  be shared.
305  */
306 public class Variant
307 {
308 	
309 	/** the main Gtk struct */
310 	protected GVariant* gVariant;
311 	
312 	
313 	public GVariant* getVariantStruct()
314 	{
315 		return gVariant;
316 	}
317 	
318 	
319 	/** the main Gtk struct as a void* */
320 	protected void* getStruct()
321 	{
322 		return cast(void*)gVariant;
323 	}
324 	
325 	/**
326 	 * Sets our main struct and passes it to the parent class
327 	 */
328 	public this (GVariant* gVariant)
329 	{
330 		this.gVariant = gVariant;
331 	}
332 	
333 	/**
334 	 * Creates a new boolean GVariant instance -- either TRUE or FALSE.
335 	 * Since 2.24
336 	 * Params:
337 	 * boolean = a gboolean value
338 	 * Throws: ConstructionException GTK+ fails to create the object.
339 	 */
340 	public this (bool boolean)
341 	{
342 		// GVariant * g_variant_new_boolean (gboolean boolean);
343 		auto p = g_variant_new_boolean(boolean);
344 		if(p is null)
345 		{
346 			throw new ConstructionException("null returned by g_variant_new_boolean(boolean)");
347 		}
348 		this(cast(GVariant*) p);
349 	}
350 	
351 	/**
352 	 * Creates a DBus object path GVariant with the contents of string.
353 	 * string must be a valid DBus object path.
354 	 * Use Variant.isObjectPath() if you're not sure.
355 	 * Since 2.24
356 	 *
357 	 * Throws: ConstructionException GTK+ fails to create the object.
358 	 */
359 	public static Variant fromObjectPath(string path)
360 	{
361 		auto p = g_variant_new_object_path(Str.toStringz(path));
362 		if(p is null)
363 		{
364 			throw new ConstructionException("null returned by g_variant_new_object_path");
365 		}
366 		return new Variant(cast(GVariant*) p);
367 	}
368 	
369 	/**
370 	 * Creates a DBus type signature GVariant with the contents of string.
371 	 * string must be a valid DBus type signature.
372 	 * Use Variant.isSignature() if you're not sure.
373 	 * Since 2.24
374 	 *
375 	 * Throws: ConstructionException GTK+ fails to create the object.
376 	 */
377 	public static Variant fromSignature(string signature)
378 	{
379 		auto p = g_variant_new_signature(Str.toStringz(signature));
380 		if(p is null)
381 		{
382 			throw new ConstructionException("null returned by g_variant_new_signature");
383 		}
384 		return new Variant(cast(GVariant*) p);
385 	}
386 	
387 	/**
388 	 * Creates an array-of-bytes GVariant with the contents of string.
389 	 * This function is just like new Variant(string) except that the string
390 	 * need not be valid utf8.
391 	 *
392 	 * The nul terminator character at the end of the string is stored in
393 	 * the array.
394 	 *
395 	 * Throws: ConstructionException GTK+ fails to create the object.
396 	 */
397 	public static Variant fromByteString(string byteString)
398 	{
399 		auto p = g_variant_new_bytestring(Str.toStringz(byteString));
400 		if(p is null)
401 		{
402 			throw new ConstructionException("null returned by g_variant_new_bytestring");
403 		}
404 		return new Variant(cast(GVariant*) p);
405 	}
406 	
407 	/**
408 	 * Constructs an array of object paths Variant from the given array
409 	 * of strings.
410 	 *
411 	 * Each string must be a valid Variant object path.
412 	 *
413 	 * Since: 2.30
414 	 *
415 	 * Params:
416 	 *     strv   = an array of strings.
417 	 *
418 	 * Throws: ConstructionException GTK+ fails to create the object.
419 	 */
420 	public static Variant fromObjv(string[] strv)
421 	{
422 		// GVariant * g_variant_new_objv (const gchar * const *strv,  gssize length);
423 		auto p = g_variant_new_objv(Str.toStringzArray(strv), strv.length);
424 		if(p is null)
425 		{
426 			throw new ConstructionException("null returned by g_variant_new_objv(strv, length)");
427 		}
428 		return new Variant(cast(GVariant*) p);
429 	}
430 	
431 	/**
432 	 * Constructs an array of bytestring GVariant from the given array of
433 	 * strings. If length is -1 then strv is NULL-terminated.
434 	 * Since 2.26
435 	 *
436 	 * Params:
437 	 *     strv   = an array of strings.
438 	 *
439 	 * Throws: ConstructionException GTK+ fails to create the object.
440 	 */
441 	public static Variant fromByteStringArray(string[] strv)
442 	{
443 		// GVariant * g_variant_new_bytestring_array (const gchar * const *strv,  gssize length);
444 		auto p = g_variant_new_bytestring_array(Str.toStringzArray(strv), strv.length);
445 		if(p is null)
446 		{
447 			throw new ConstructionException("null returned by g_variant_new_bytestring_array(strv, length)");
448 		}
449 		return new Variant(cast(GVariant*) p);
450 	}
451 	
452 	/**
453 	 */
454 	
455 	/**
456 	 * Decreases the reference count of value. When its reference count
457 	 * drops to 0, the memory used by the variant is freed.
458 	 * Since 2.24
459 	 */
460 	public void unref()
461 	{
462 		// void g_variant_unref (GVariant *value);
463 		g_variant_unref(gVariant);
464 	}
465 	
466 	/**
467 	 * Increases the reference count of value.
468 	 * Since 2.24
469 	 * Returns: the same value
470 	 */
471 	public Variant doref()
472 	{
473 		// GVariant * g_variant_ref (GVariant *value);
474 		auto p = g_variant_ref(gVariant);
475 		
476 		if(p is null)
477 		{
478 			return null;
479 		}
480 		
481 		return new Variant(cast(GVariant*) p);
482 	}
483 	
484 	/**
485 	 * GVariant uses a floating reference count system. All functions with
486 	 * names starting with g_variant_new_ return floating
487 	 * references.
488 	 * Calling g_variant_ref_sink() on a GVariant with a floating reference
489 	 * will convert the floating reference into a full reference. Calling
490 	 * g_variant_ref_sink() on a non-floating GVariant results in an
491 	 * additional normal reference being added.
492 	 * In other words, if the value is floating, then this call "assumes
493 	 * ownership" of the floating reference, converting it to a normal
494 	 * reference. If the value is not floating, then this call adds a
495 	 * new normal reference increasing the reference count by one.
496 	 * All calls that result in a GVariant instance being inserted into a
497 	 * container will call g_variant_ref_sink() on the instance. This means
498 	 * that if the value was just created (and has only its floating
499 	 * reference) then the container will assume sole ownership of the value
500 	 * at that point and the caller will not need to unreference it. This
501 	 * makes certain common styles of programming much easier while still
502 	 * maintaining normal refcounting semantics in situations where values
503 	 * are not floating.
504 	 * Since 2.24
505 	 * Returns: the same value
506 	 */
507 	public Variant refSink()
508 	{
509 		// GVariant * g_variant_ref_sink (GVariant *value);
510 		auto p = g_variant_ref_sink(gVariant);
511 		
512 		if(p is null)
513 		{
514 			return null;
515 		}
516 		
517 		return new Variant(cast(GVariant*) p);
518 	}
519 	
520 	/**
521 	 * Checks whether value has a floating reference count.
522 	 * This function should only ever be used to assert that a given variant
523 	 * is or is not floating, or for debug purposes. To acquire a reference
524 	 * to a variant that might be floating, always use g_variant_ref_sink()
525 	 * or g_variant_take_ref().
526 	 * See g_variant_ref_sink() for more information about floating reference
527 	 * counts.
528 	 * Since 2.26
529 	 * Returns: whether value is floating
530 	 */
531 	public int isFloating()
532 	{
533 		// gboolean g_variant_is_floating (GVariant *value);
534 		return g_variant_is_floating(gVariant);
535 	}
536 	
537 	/**
538 	 * If value is floating, sink it. Otherwise, do nothing.
539 	 * Typically you want to use g_variant_ref_sink() in order to
540 	 * automatically do the correct thing with respect to floating or
541 	 * non-floating references, but there is one specific scenario where
542 	 * this function is helpful.
543 	 * The situation where this function is helpful is when creating an API
544 	 * that allows the user to provide a callback function that returns a
545 	 * GVariant. We certainly want to allow the user the flexibility to
546 	 * return a non-floating reference from this callback (for the case
547 	 * where the value that is being returned already exists).
548 	 * At the same time, the style of the GVariant API makes it likely that
549 	 * for newly-created GVariant instances, the user can be saved some
550 	 * typing if they are allowed to return a GVariant with a floating
551 	 * reference.
552 	 * Using this function on the return value of the user's callback allows
553 	 * the user to do whichever is more convenient for them. The caller
554 	 * will alway receives exactly one full reference to the value: either
555 	 * the one that was returned in the first place, or a floating reference
556 	 * that has been converted to a full reference.
557 	 * This function has an odd interaction when combined with
558 	 * g_variant_ref_sink() running at the same time in another thread on
559 	 * the same GVariant instance. If g_variant_ref_sink() runs first then
560 	 * the result will be that the floating reference is converted to a hard
561 	 * reference. If g_variant_take_ref() runs first then the result will
562 	 * be that the floating reference is converted to a hard reference and
563 	 * an additional reference on top of that one is added. It is best to
564 	 * avoid this situation.
565 	 * Returns: the same value
566 	 */
567 	public Variant takeRef()
568 	{
569 		// GVariant * g_variant_take_ref (GVariant *value);
570 		auto p = g_variant_take_ref(gVariant);
571 		
572 		if(p is null)
573 		{
574 			return null;
575 		}
576 		
577 		return new Variant(cast(GVariant*) p);
578 	}
579 	
580 	/**
581 	 * Determines the type of value.
582 	 * The return value is valid for the lifetime of value and must not
583 	 * be freed.
584 	 * Since 2.24
585 	 * Returns: a GVariantType
586 	 */
587 	public VariantType getType()
588 	{
589 		// const GVariantType * g_variant_get_type (GVariant *value);
590 		auto p = g_variant_get_type(gVariant);
591 		
592 		if(p is null)
593 		{
594 			return null;
595 		}
596 		
597 		return new VariantType(cast(GVariantType*) p);
598 	}
599 	
600 	/**
601 	 * Returns the type string of value. Unlike the result of calling
602 	 * g_variant_type_peek_string(), this string is nul-terminated. This
603 	 * string belongs to GVariant and must not be freed.
604 	 * Since 2.24
605 	 * Returns: the type string for the type of value
606 	 */
607 	public string getTypeString()
608 	{
609 		// const gchar * g_variant_get_type_string (GVariant *value);
610 		return Str.toString(g_variant_get_type_string(gVariant));
611 	}
612 	
613 	/**
614 	 * Checks if a value has a type matching the provided type.
615 	 * Since 2.24
616 	 * Params:
617 	 * type = a GVariantType
618 	 * Returns: TRUE if the type of value matches type
619 	 */
620 	public int isOfType(VariantType type)
621 	{
622 		// gboolean g_variant_is_of_type (GVariant *value,  const GVariantType *type);
623 		return g_variant_is_of_type(gVariant, (type is null) ? null : type.getVariantTypeStruct());
624 	}
625 	
626 	/**
627 	 * Checks if value is a container.
628 	 * Since 2.24
629 	 * Returns: TRUE if value is a container
630 	 */
631 	public int isContainer()
632 	{
633 		// gboolean g_variant_is_container (GVariant *value);
634 		return g_variant_is_container(gVariant);
635 	}
636 	
637 	/**
638 	 * Compares one and two.
639 	 * The types of one and two are gconstpointer only to allow use of
640 	 * this function with GTree, GPtrArray, etc. They must each be a
641 	 * GVariant.
642 	 * Comparison is only defined for basic types (ie: booleans, numbers,
643 	 * strings). For booleans, FALSE is less than TRUE. Numbers are
644 	 * ordered in the usual way. Strings are in ASCII lexographical order.
645 	 * It is a programmer error to attempt to compare container values or
646 	 * two values that have types that are not exactly equal. For example,
647 	 * you cannot compare a 32-bit signed integer with a 32-bit unsigned
648 	 * integer. Also note that this function is not particularly
649 	 * well-behaved when it comes to comparison of doubles; in particular,
650 	 * the handling of incomparable values (ie: NaN) is undefined.
651 	 * If you only require an equality comparison, g_variant_equal() is more
652 	 * general.
653 	 * Since 2.26
654 	 * Params:
655 	 * one = a basic-typed GVariant instance. [type GVariant]
656 	 * two = a GVariant instance of the same type. [type GVariant]
657 	 * Returns: negative value if a < b; zero if a = b; positive value if a > b.
658 	 */
659 	public static int compare(void* one, void* two)
660 	{
661 		// gint g_variant_compare (gconstpointer one,  gconstpointer two);
662 		return g_variant_compare(one, two);
663 	}
664 	
665 	/**
666 	 * Classifies value according to its top-level type.
667 	 * Since 2.24
668 	 * Returns: the GVariantClass of value
669 	 */
670 	public GVariantClass classify()
671 	{
672 		// GVariantClass g_variant_classify (GVariant *value);
673 		return g_variant_classify(gVariant);
674 	}
675 	
676 	/**
677 	 * Checks if calling g_variant_get() with format_string on value would
678 	 * be valid from a type-compatibility standpoint. format_string is
679 	 * assumed to be a valid format string (from a syntactic standpoint).
680 	 * If copy_only is TRUE then this function additionally checks that it
681 	 * would be safe to call g_variant_unref() on value immediately after
682 	 * the call to g_variant_get() without invalidating the result. This is
683 	 * only possible if deep copies are made (ie: there are no pointers to
684 	 * the data inside of the soon-to-be-freed GVariant instance). If this
685 	 * check fails then a g_critical() is printed and FALSE is returned.
686 	 * This function is meant to be used by functions that wish to provide
687 	 * Since 2.34
688 	 * Params:
689 	 * formatString = a valid GVariant format string
690 	 * copyOnly = TRUE to ensure the format string makes deep copies
691 	 * Returns: TRUE if format_string is safe to use
692 	 */
693 	public int checkFormatString(string formatString, int copyOnly)
694 	{
695 		// gboolean g_variant_check_format_string (GVariant *value,  const gchar *format_string,  gboolean copy_only);
696 		return g_variant_check_format_string(gVariant, Str.toStringz(formatString), copyOnly);
697 	}
698 	
699 	/**
700 	 * This function is intended to be used by libraries based on GVariant
701 	 * that want to provide g_variant_get()-like functionality to their
702 	 * users.
703 	 * The API is more general than g_variant_get() to allow a wider range
704 	 * of possible uses.
705 	 * format_string must still point to a valid format string, but it only
706 	 * need to be nul-terminated if endptr is NULL. If endptr is
707 	 * non-NULL then it is updated to point to the first character past the
708 	 * end of the format string.
709 	 * app is a pointer to a va_list. The arguments, according to
710 	 * format_string, are collected from this va_list and the list is left
711 	 * pointing to the argument following the last.
712 	 * These two generalisations allow mixing of multiple calls to
713 	 * g_variant_new_va() and g_variant_get_va() within a single actual
714 	 * varargs call by the user.
715 	 * format_string determines the C types that are used for unpacking
716 	 * the values and also determines if the values are copied or borrowed,
717 	 * see the section on
718 	 * GVariant Format Strings.
719 	 * Since 2.24
720 	 * Params:
721 	 * formatString = a string that is prefixed with a format string
722 	 * endptr = location to store the end pointer,
723 	 * or NULL. [allow-none][default NULL]
724 	 * app = a pointer to a va_list
725 	 */
726 	public void getVa(string formatString, out string endptr, void** app)
727 	{
728 		// void g_variant_get_va (GVariant *value,  const gchar *format_string,  const gchar **endptr,  va_list *app);
729 		char* outendptr = null;
730 		
731 		g_variant_get_va(gVariant, Str.toStringz(formatString), &outendptr, app);
732 		
733 		endptr = Str.toString(outendptr);
734 	}
735 	
736 	/**
737 	 * This function is intended to be used by libraries based on
738 	 * GVariant that want to provide g_variant_new()-like functionality
739 	 * to their users.
740 	 * The API is more general than g_variant_new() to allow a wider range
741 	 * of possible uses.
742 	 * format_string must still point to a valid format string, but it only
743 	 * needs to be nul-terminated if endptr is NULL. If endptr is
744 	 * non-NULL then it is updated to point to the first character past the
745 	 * end of the format string.
746 	 * app is a pointer to a va_list. The arguments, according to
747 	 * format_string, are collected from this va_list and the list is left
748 	 * pointing to the argument following the last.
749 	 * These two generalisations allow mixing of multiple calls to
750 	 * g_variant_new_va() and g_variant_get_va() within a single actual
751 	 * varargs call by the user.
752 	 * The return value will be floating if it was a newly created GVariant
753 	 * instance (for example, if the format string was "(ii)"). In the case
754 	 * that the format_string was '*', '?', 'r', or a format starting with
755 	 * '@' then the collected GVariant pointer will be returned unmodified,
756 	 * without adding any additional references.
757 	 * In order to behave correctly in all cases it is necessary for the
758 	 * calling function to g_variant_ref_sink() the return result before
759 	 * returning control to the user that originally provided the pointer.
760 	 * At this point, the caller will have their own full reference to the
761 	 * result. This can also be done by adding the result to a container,
762 	 * or by passing it to another g_variant_new() call.
763 	 * Since 2.24
764 	 * Params:
765 	 * formatString = a string that is prefixed with a format string
766 	 * endptr = location to store the end pointer,
767 	 * or NULL. [allow-none][default NULL]
768 	 * app = a pointer to a va_list
769 	 * Throws: ConstructionException GTK+ fails to create the object.
770 	 */
771 	public this (string formatString, out string endptr, void** app)
772 	{
773 		// GVariant * g_variant_new_va (const gchar *format_string,  const gchar **endptr,  va_list *app);
774 		char* outendptr = null;
775 		
776 		auto p = g_variant_new_va(Str.toStringz(formatString), &outendptr, app);
777 		if(p is null)
778 		{
779 			throw new ConstructionException("null returned by g_variant_new_va(Str.toStringz(formatString), &outendptr, app)");
780 		}
781 		
782 		endptr = Str.toString(outendptr);
783 		this(cast(GVariant*) p);
784 	}
785 	
786 	/**
787 	 * Creates a new byte GVariant instance.
788 	 * Since 2.24
789 	 * Params:
790 	 * value = a guint8 value
791 	 * Throws: ConstructionException GTK+ fails to create the object.
792 	 */
793 	public this (char value)
794 	{
795 		// GVariant * g_variant_new_byte (guchar value);
796 		auto p = g_variant_new_byte(value);
797 		if(p is null)
798 		{
799 			throw new ConstructionException("null returned by g_variant_new_byte(value)");
800 		}
801 		this(cast(GVariant*) p);
802 	}
803 	
804 	/**
805 	 * Creates a new int16 GVariant instance.
806 	 * Since 2.24
807 	 * Params:
808 	 * value = a gint16 value
809 	 * Throws: ConstructionException GTK+ fails to create the object.
810 	 */
811 	public this (short value)
812 	{
813 		// GVariant * g_variant_new_int16 (gint16 value);
814 		auto p = g_variant_new_int16(value);
815 		if(p is null)
816 		{
817 			throw new ConstructionException("null returned by g_variant_new_int16(value)");
818 		}
819 		this(cast(GVariant*) p);
820 	}
821 	
822 	/**
823 	 * Creates a new uint16 GVariant instance.
824 	 * Since 2.24
825 	 * Params:
826 	 * value = a guint16 value
827 	 * Throws: ConstructionException GTK+ fails to create the object.
828 	 */
829 	public this (ushort value)
830 	{
831 		// GVariant * g_variant_new_uint16 (guint16 value);
832 		auto p = g_variant_new_uint16(value);
833 		if(p is null)
834 		{
835 			throw new ConstructionException("null returned by g_variant_new_uint16(value)");
836 		}
837 		this(cast(GVariant*) p);
838 	}
839 	
840 	/**
841 	 * Creates a new int32 GVariant instance.
842 	 * Since 2.24
843 	 * Params:
844 	 * value = a gint32 value
845 	 * Throws: ConstructionException GTK+ fails to create the object.
846 	 */
847 	public this (int value)
848 	{
849 		// GVariant * g_variant_new_int32 (gint32 value);
850 		auto p = g_variant_new_int32(value);
851 		if(p is null)
852 		{
853 			throw new ConstructionException("null returned by g_variant_new_int32(value)");
854 		}
855 		this(cast(GVariant*) p);
856 	}
857 	
858 	/**
859 	 * Creates a new uint32 GVariant instance.
860 	 * Since 2.24
861 	 * Params:
862 	 * value = a guint32 value
863 	 * Throws: ConstructionException GTK+ fails to create the object.
864 	 */
865 	public this (uint value)
866 	{
867 		// GVariant * g_variant_new_uint32 (guint32 value);
868 		auto p = g_variant_new_uint32(value);
869 		if(p is null)
870 		{
871 			throw new ConstructionException("null returned by g_variant_new_uint32(value)");
872 		}
873 		this(cast(GVariant*) p);
874 	}
875 	
876 	/**
877 	 * Creates a new int64 GVariant instance.
878 	 * Since 2.24
879 	 * Params:
880 	 * value = a gint64 value
881 	 * Throws: ConstructionException GTK+ fails to create the object.
882 	 */
883 	public this (long value)
884 	{
885 		// GVariant * g_variant_new_int64 (gint64 value);
886 		auto p = g_variant_new_int64(value);
887 		if(p is null)
888 		{
889 			throw new ConstructionException("null returned by g_variant_new_int64(value)");
890 		}
891 		this(cast(GVariant*) p);
892 	}
893 	
894 	/**
895 	 * Creates a new uint64 GVariant instance.
896 	 * Since 2.24
897 	 * Params:
898 	 * value = a guint64 value
899 	 * Throws: ConstructionException GTK+ fails to create the object.
900 	 */
901 	public this (ulong value)
902 	{
903 		// GVariant * g_variant_new_uint64 (guint64 value);
904 		auto p = g_variant_new_uint64(value);
905 		if(p is null)
906 		{
907 			throw new ConstructionException("null returned by g_variant_new_uint64(value)");
908 		}
909 		this(cast(GVariant*) p);
910 	}
911 	
912 	/**
913 	 * Creates a new double GVariant instance.
914 	 * Since 2.24
915 	 * Params:
916 	 * value = a gdouble floating point value
917 	 * Throws: ConstructionException GTK+ fails to create the object.
918 	 */
919 	public this (double value)
920 	{
921 		// GVariant * g_variant_new_double (gdouble value);
922 		auto p = g_variant_new_double(value);
923 		if(p is null)
924 		{
925 			throw new ConstructionException("null returned by g_variant_new_double(value)");
926 		}
927 		this(cast(GVariant*) p);
928 	}
929 	
930 	/**
931 	 * Creates a string GVariant with the contents of string.
932 	 * string must be valid utf8.
933 	 * Since 2.24
934 	 * Params:
935 	 * string = a normal utf8 nul-terminated string
936 	 * Throws: ConstructionException GTK+ fails to create the object.
937 	 */
938 	public this (string string)
939 	{
940 		// GVariant * g_variant_new_string (const gchar *string);
941 		auto p = g_variant_new_string(Str.toStringz(string));
942 		if(p is null)
943 		{
944 			throw new ConstructionException("null returned by g_variant_new_string(Str.toStringz(string))");
945 		}
946 		this(cast(GVariant*) p);
947 	}
948 	
949 	/**
950 	 * Determines if a given string is a valid D-Bus object path. You
951 	 * should ensure that a string is a valid D-Bus object path before
952 	 * passing it to g_variant_new_object_path().
953 	 * A valid object path starts with '/' followed by zero or more
954 	 * sequences of characters separated by '/' characters. Each sequence
955 	 * must contain only the characters "[A-Z][a-z][0-9]_". No sequence
956 	 * (including the one following the final '/' character) may be empty.
957 	 * Since 2.24
958 	 * Params:
959 	 * string = a normal C nul-terminated string
960 	 * Returns: TRUE if string is a D-Bus object path
961 	 */
962 	public static int isObjectPath(string string)
963 	{
964 		// gboolean g_variant_is_object_path (const gchar *string);
965 		return g_variant_is_object_path(Str.toStringz(string));
966 	}
967 	
968 	/**
969 	 * Determines if a given string is a valid D-Bus type signature. You
970 	 * should ensure that a string is a valid D-Bus type signature before
971 	 * passing it to g_variant_new_signature().
972 	 * D-Bus type signatures consist of zero or more definite GVariantType
973 	 * strings in sequence.
974 	 * Since 2.24
975 	 * Params:
976 	 * string = a normal C nul-terminated string
977 	 * Returns: TRUE if string is a D-Bus type signature
978 	 */
979 	public static int isSignature(string string)
980 	{
981 		// gboolean g_variant_is_signature (const gchar *string);
982 		return g_variant_is_signature(Str.toStringz(string));
983 	}
984 	
985 	/**
986 	 * Boxes value. The result is a GVariant instance representing a
987 	 * variant containing the original value.
988 	 * If child is a floating reference (see g_variant_ref_sink()), the new
989 	 * instance takes ownership of child.
990 	 * Since 2.24
991 	 * Params:
992 	 * value = a GVariant instance
993 	 * Throws: ConstructionException GTK+ fails to create the object.
994 	 */
995 	public this (Variant value)
996 	{
997 		// GVariant * g_variant_new_variant (GVariant *value);
998 		auto p = g_variant_new_variant((value is null) ? null : value.getVariantStruct());
999 		if(p is null)
1000 		{
1001 			throw new ConstructionException("null returned by g_variant_new_variant((value is null) ? null : value.getVariantStruct())");
1002 		}
1003 		this(cast(GVariant*) p);
1004 	}
1005 	
1006 	/**
1007 	 * Constructs an array of strings GVariant from the given array of
1008 	 * strings.
1009 	 * If length is -1 then strv is NULL-terminated.
1010 	 * Since 2.24
1011 	 * Params:
1012 	 * strv = an array of strings. [array length=length][element-type utf8]
1013 	 * Throws: ConstructionException GTK+ fails to create the object.
1014 	 */
1015 	public this (string[] strv)
1016 	{
1017 		// GVariant * g_variant_new_strv (const gchar * const *strv,  gssize length);
1018 		auto p = g_variant_new_strv(Str.toStringzArray(strv), cast(int) strv.length);
1019 		if(p is null)
1020 		{
1021 			throw new ConstructionException("null returned by g_variant_new_strv(Str.toStringzArray(strv), cast(int) strv.length)");
1022 		}
1023 		this(cast(GVariant*) p);
1024 	}
1025 	
1026 	/**
1027 	 * Returns the boolean value of value.
1028 	 * It is an error to call this function with a value of any type
1029 	 * other than G_VARIANT_TYPE_BOOLEAN.
1030 	 * Since 2.24
1031 	 * Returns: TRUE or FALSE
1032 	 */
1033 	public int getBoolean()
1034 	{
1035 		// gboolean g_variant_get_boolean (GVariant *value);
1036 		return g_variant_get_boolean(gVariant);
1037 	}
1038 	
1039 	/**
1040 	 * Returns the byte value of value.
1041 	 * It is an error to call this function with a value of any type
1042 	 * other than G_VARIANT_TYPE_BYTE.
1043 	 * Since 2.24
1044 	 * Returns: a guchar
1045 	 */
1046 	public char getByte()
1047 	{
1048 		// guchar g_variant_get_byte (GVariant *value);
1049 		return g_variant_get_byte(gVariant);
1050 	}
1051 	
1052 	/**
1053 	 * Returns the 16-bit signed integer value of value.
1054 	 * It is an error to call this function with a value of any type
1055 	 * other than G_VARIANT_TYPE_INT16.
1056 	 * Since 2.24
1057 	 * Returns: a gint16
1058 	 */
1059 	public short getInt16()
1060 	{
1061 		// gint16 g_variant_get_int16 (GVariant *value);
1062 		return g_variant_get_int16(gVariant);
1063 	}
1064 	
1065 	/**
1066 	 * Returns the 16-bit unsigned integer value of value.
1067 	 * It is an error to call this function with a value of any type
1068 	 * other than G_VARIANT_TYPE_UINT16.
1069 	 * Since 2.24
1070 	 * Returns: a guint16
1071 	 */
1072 	public ushort getUint16()
1073 	{
1074 		// guint16 g_variant_get_uint16 (GVariant *value);
1075 		return g_variant_get_uint16(gVariant);
1076 	}
1077 	
1078 	/**
1079 	 * Returns the 32-bit signed integer value of value.
1080 	 * It is an error to call this function with a value of any type
1081 	 * other than G_VARIANT_TYPE_INT32.
1082 	 * Since 2.24
1083 	 * Returns: a gint32
1084 	 */
1085 	public int getInt32()
1086 	{
1087 		// gint32 g_variant_get_int32 (GVariant *value);
1088 		return g_variant_get_int32(gVariant);
1089 	}
1090 	
1091 	/**
1092 	 * Returns the 32-bit unsigned integer value of value.
1093 	 * It is an error to call this function with a value of any type
1094 	 * other than G_VARIANT_TYPE_UINT32.
1095 	 * Since 2.24
1096 	 * Returns: a guint32
1097 	 */
1098 	public uint getUint32()
1099 	{
1100 		// guint32 g_variant_get_uint32 (GVariant *value);
1101 		return g_variant_get_uint32(gVariant);
1102 	}
1103 	
1104 	/**
1105 	 * Returns the 64-bit signed integer value of value.
1106 	 * It is an error to call this function with a value of any type
1107 	 * other than G_VARIANT_TYPE_INT64.
1108 	 * Since 2.24
1109 	 * Returns: a gint64
1110 	 */
1111 	public long getInt64()
1112 	{
1113 		// gint64 g_variant_get_int64 (GVariant *value);
1114 		return g_variant_get_int64(gVariant);
1115 	}
1116 	
1117 	/**
1118 	 * Returns the 64-bit unsigned integer value of value.
1119 	 * It is an error to call this function with a value of any type
1120 	 * other than G_VARIANT_TYPE_UINT64.
1121 	 * Since 2.24
1122 	 * Returns: a guint64
1123 	 */
1124 	public ulong getUint64()
1125 	{
1126 		// guint64 g_variant_get_uint64 (GVariant *value);
1127 		return g_variant_get_uint64(gVariant);
1128 	}
1129 	
1130 	/**
1131 	 * Returns the 32-bit signed integer value of value.
1132 	 * It is an error to call this function with a value of any type other
1133 	 * than G_VARIANT_TYPE_HANDLE.
1134 	 * By convention, handles are indexes into an array of file descriptors
1135 	 * that are sent alongside a D-Bus message. If you're not interacting
1136 	 * with D-Bus, you probably don't need them.
1137 	 * Since 2.24
1138 	 * Returns: a gint32
1139 	 */
1140 	public int getHandle()
1141 	{
1142 		// gint32 g_variant_get_handle (GVariant *value);
1143 		return g_variant_get_handle(gVariant);
1144 	}
1145 	
1146 	/**
1147 	 * Returns the double precision floating point value of value.
1148 	 * It is an error to call this function with a value of any type
1149 	 * other than G_VARIANT_TYPE_DOUBLE.
1150 	 * Since 2.24
1151 	 * Returns: a gdouble
1152 	 */
1153 	public double getDouble()
1154 	{
1155 		// gdouble g_variant_get_double (GVariant *value);
1156 		return g_variant_get_double(gVariant);
1157 	}
1158 	
1159 	/**
1160 	 * Returns the string value of a GVariant instance with a string
1161 	 * type. This includes the types G_VARIANT_TYPE_STRING,
1162 	 * G_VARIANT_TYPE_OBJECT_PATH and G_VARIANT_TYPE_SIGNATURE.
1163 	 * The string will always be utf8 encoded.
1164 	 * If length is non-NULL then the length of the string (in bytes) is
1165 	 * returned there. For trusted values, this information is already
1166 	 * known. For untrusted values, a strlen() will be performed.
1167 	 * It is an error to call this function with a value of any type
1168 	 * other than those three.
1169 	 * The return value remains valid as long as value exists.
1170 	 * Since 2.24
1171 	 * Params:
1172 	 * length = a pointer to a gsize,
1173 	 * to store the length. [allow-none][default 0][out]
1174 	 * Returns: the constant string, utf8 encoded. [transfer none]
1175 	 */
1176 	public string getString(out gsize length)
1177 	{
1178 		// const gchar * g_variant_get_string (GVariant *value,  gsize *length);
1179 		return Str.toString(g_variant_get_string(gVariant, &length));
1180 	}
1181 	
1182 	/**
1183 	 * Similar to g_variant_get_string() except that instead of returning
1184 	 * a constant string, the string is duplicated.
1185 	 * The string will always be utf8 encoded.
1186 	 * The return value must be freed using g_free().
1187 	 * Since 2.24
1188 	 * Returns: a newly allocated string, utf8 encoded. [transfer full]
1189 	 */
1190 	public string dupString()
1191 	{
1192 		// gchar * g_variant_dup_string (GVariant *value,  gsize *length);
1193 		gsize length;
1194 		auto p = g_variant_dup_string(gVariant, &length);
1195 		return Str.toString(p, length);
1196 	}
1197 	
1198 	/**
1199 	 * Unboxes value. The result is the GVariant instance that was
1200 	 * contained in value.
1201 	 * Since 2.24
1202 	 * Returns: the item contained in the variant. [transfer full]
1203 	 */
1204 	public Variant getVariant()
1205 	{
1206 		// GVariant * g_variant_get_variant (GVariant *value);
1207 		auto p = g_variant_get_variant(gVariant);
1208 		
1209 		if(p is null)
1210 		{
1211 			return null;
1212 		}
1213 		
1214 		return new Variant(cast(GVariant*) p);
1215 	}
1216 	
1217 	/**
1218 	 * Gets the contents of an array of strings GVariant. This call
1219 	 * makes a shallow copy; the return result should be released with
1220 	 * g_free(), but the individual strings must not be modified.
1221 	 * If length is non-NULL then the number of elements in the result
1222 	 * is stored there. In any case, the resulting array will be
1223 	 * NULL-terminated.
1224 	 * For an empty array, length will be set to 0 and a pointer to a
1225 	 * NULL pointer will be returned.
1226 	 * Since 2.24
1227 	 * Returns: an array of constant strings. [array length=length zero-terminated=1][transfer container]
1228 	 */
1229 	public string[] getStrv()
1230 	{
1231 		// const gchar ** g_variant_get_strv (GVariant *value,  gsize *length);
1232 		gsize length;
1233 		auto p = g_variant_get_strv(gVariant, &length);
1234 		
1235 		string[] strArray = null;
1236 		foreach ( cstr; p[0 .. length] )
1237 		{
1238 			strArray ~= Str.toString(cstr);
1239 		}
1240 		
1241 		return strArray;
1242 	}
1243 	
1244 	/**
1245 	 * Gets the contents of an array of strings GVariant. This call
1246 	 * makes a deep copy; the return result should be released with
1247 	 * g_strfreev().
1248 	 * If length is non-NULL then the number of elements in the result
1249 	 * is stored there. In any case, the resulting array will be
1250 	 * NULL-terminated.
1251 	 * For an empty array, length will be set to 0 and a pointer to a
1252 	 * NULL pointer will be returned.
1253 	 * Since 2.24
1254 	 * Returns: an array of strings. [array length=length zero-terminated=1][transfer full]
1255 	 */
1256 	public string[] dupStrv()
1257 	{
1258 		// gchar ** g_variant_dup_strv (GVariant *value,  gsize *length);
1259 		gsize length;
1260 		auto p = g_variant_dup_strv(gVariant, &length);
1261 		
1262 		string[] strArray = null;
1263 		foreach ( cstr; p[0 .. length] )
1264 		{
1265 			strArray ~= Str.toString(cstr);
1266 		}
1267 		
1268 		return strArray;
1269 	}
1270 	
1271 	/**
1272 	 * Gets the contents of an array of object paths GVariant. This call
1273 	 * makes a shallow copy; the return result should be released with
1274 	 * g_free(), but the individual strings must not be modified.
1275 	 * If length is non-NULL then the number of elements in the result
1276 	 * is stored there. In any case, the resulting array will be
1277 	 * NULL-terminated.
1278 	 * For an empty array, length will be set to 0 and a pointer to a
1279 	 * NULL pointer will be returned.
1280 	 * Since 2.30
1281 	 * Returns: an array of constant strings. [array length=length zero-terminated=1][transfer container]
1282 	 */
1283 	public string[] getObjv()
1284 	{
1285 		// const gchar ** g_variant_get_objv (GVariant *value,  gsize *length);
1286 		gsize length;
1287 		auto p = g_variant_get_objv(gVariant, &length);
1288 		
1289 		string[] strArray = null;
1290 		foreach ( cstr; p[0 .. length] )
1291 		{
1292 			strArray ~= Str.toString(cstr);
1293 		}
1294 		
1295 		return strArray;
1296 	}
1297 	
1298 	/**
1299 	 * Gets the contents of an array of object paths GVariant. This call
1300 	 * makes a deep copy; the return result should be released with
1301 	 * g_strfreev().
1302 	 * If length is non-NULL then the number of elements in the result
1303 	 * is stored there. In any case, the resulting array will be
1304 	 * NULL-terminated.
1305 	 * For an empty array, length will be set to 0 and a pointer to a
1306 	 * NULL pointer will be returned.
1307 	 * Since 2.30
1308 	 * Returns: an array of strings. [array length=length zero-terminated=1][transfer full]
1309 	 */
1310 	public string[] dupObjv()
1311 	{
1312 		// gchar ** g_variant_dup_objv (GVariant *value,  gsize *length);
1313 		gsize length;
1314 		auto p = g_variant_dup_objv(gVariant, &length);
1315 		
1316 		string[] strArray = null;
1317 		foreach ( cstr; p[0 .. length] )
1318 		{
1319 			strArray ~= Str.toString(cstr);
1320 		}
1321 		
1322 		return strArray;
1323 	}
1324 	
1325 	/**
1326 	 * Returns the string value of a GVariant instance with an
1327 	 * array-of-bytes type. The string has no particular encoding.
1328 	 * If the array does not end with a nul terminator character, the empty
1329 	 * string is returned. For this reason, you can always trust that a
1330 	 * non-NULL nul-terminated string will be returned by this function.
1331 	 * If the array contains a nul terminator character somewhere other than
1332 	 * the last byte then the returned string is the string, up to the first
1333 	 * such nul character.
1334 	 * It is an error to call this function with a value that is not an
1335 	 * array of bytes.
1336 	 * The return value remains valid as long as value exists.
1337 	 * Since 2.26
1338 	 * Returns: the constant string. [transfer none][array zero-terminated=1][element-type guint8]
1339 	 */
1340 	public string getBytestring()
1341 	{
1342 		// const gchar * g_variant_get_bytestring (GVariant *value);
1343 		return Str.toString(g_variant_get_bytestring(gVariant));
1344 	}
1345 	
1346 	/**
1347 	 * Similar to g_variant_get_bytestring() except that instead of
1348 	 * returning a constant string, the string is duplicated.
1349 	 * The return value must be freed using g_free().
1350 	 * Since 2.26
1351 	 * Returns: a newly allocated string. [transfer full][array zero-terminated=1 length=length][element-type guint8]
1352 	 */
1353 	public string dupBytestring()
1354 	{
1355 		// gchar * g_variant_dup_bytestring (GVariant *value,  gsize *length);
1356 		gsize length;
1357 		auto p = g_variant_dup_bytestring(gVariant, &length);
1358 		return Str.toString(p, length);
1359 	}
1360 	
1361 	/**
1362 	 * Gets the contents of an array of array of bytes GVariant. This call
1363 	 * makes a shallow copy; the return result should be released with
1364 	 * g_free(), but the individual strings must not be modified.
1365 	 * If length is non-NULL then the number of elements in the result is
1366 	 * stored there. In any case, the resulting array will be
1367 	 * NULL-terminated.
1368 	 * For an empty array, length will be set to 0 and a pointer to a
1369 	 * NULL pointer will be returned.
1370 	 * Since 2.26
1371 	 * Returns: an array of constant strings. [array length=length][transfer container]
1372 	 */
1373 	public string[] getBytestringArray()
1374 	{
1375 		// const gchar ** g_variant_get_bytestring_array (GVariant *value,  gsize *length);
1376 		gsize length;
1377 		auto p = g_variant_get_bytestring_array(gVariant, &length);
1378 		
1379 		string[] strArray = null;
1380 		foreach ( cstr; p[0 .. length] )
1381 		{
1382 			strArray ~= Str.toString(cstr);
1383 		}
1384 		
1385 		return strArray;
1386 	}
1387 	
1388 	/**
1389 	 * Gets the contents of an array of array of bytes GVariant. This call
1390 	 * makes a deep copy; the return result should be released with
1391 	 * g_strfreev().
1392 	 * If length is non-NULL then the number of elements in the result is
1393 	 * stored there. In any case, the resulting array will be
1394 	 * NULL-terminated.
1395 	 * For an empty array, length will be set to 0 and a pointer to a
1396 	 * NULL pointer will be returned.
1397 	 * Since 2.26
1398 	 * Returns: an array of strings. [array length=length][transfer full]
1399 	 */
1400 	public string[] dupBytestringArray()
1401 	{
1402 		// gchar ** g_variant_dup_bytestring_array (GVariant *value,  gsize *length);
1403 		gsize length;
1404 		auto p = g_variant_dup_bytestring_array(gVariant, &length);
1405 		
1406 		string[] strArray = null;
1407 		foreach ( cstr; p[0 .. length] )
1408 		{
1409 			strArray ~= Str.toString(cstr);
1410 		}
1411 		
1412 		return strArray;
1413 	}
1414 	
1415 	/**
1416 	 * Depending on if child is NULL, either wraps child inside of a
1417 	 * maybe container or creates a Nothing instance for the given type.
1418 	 * At least one of child_type and child must be non-NULL.
1419 	 * If child_type is non-NULL then it must be a definite type.
1420 	 * If they are both non-NULL then child_type must be the type
1421 	 * of child.
1422 	 * If child is a floating reference (see g_variant_ref_sink()), the new
1423 	 * instance takes ownership of child.
1424 	 * Since 2.24
1425 	 * Params:
1426 	 * childType = the GVariantType of the child, or NULL. [allow-none]
1427 	 * child = the child value, or NULL. [allow-none]
1428 	 * Throws: ConstructionException GTK+ fails to create the object.
1429 	 */
1430 	public this (VariantType childType, Variant child)
1431 	{
1432 		// GVariant * g_variant_new_maybe (const GVariantType *child_type,  GVariant *child);
1433 		auto p = g_variant_new_maybe((childType is null) ? null : childType.getVariantTypeStruct(), (child is null) ? null : child.getVariantStruct());
1434 		if(p is null)
1435 		{
1436 			throw new ConstructionException("null returned by g_variant_new_maybe((childType is null) ? null : childType.getVariantTypeStruct(), (child is null) ? null : child.getVariantStruct())");
1437 		}
1438 		this(cast(GVariant*) p);
1439 	}
1440 	
1441 	/**
1442 	 * Creates a new GVariant array from children.
1443 	 * child_type must be non-NULL if n_children is zero. Otherwise, the
1444 	 * child type is determined by inspecting the first element of the
1445 	 * children array. If child_type is non-NULL then it must be a
1446 	 * definite type.
1447 	 * The items of the array are taken from the children array. No entry
1448 	 * in the children array may be NULL.
1449 	 * All items in the array must have the same type, which must be the
1450 	 * same as child_type, if given.
1451 	 * If the children are floating references (see g_variant_ref_sink()), the
1452 	 * new instance takes ownership of them as if via g_variant_ref_sink().
1453 	 * Since 2.24
1454 	 * Params:
1455 	 * childType = the element type of the new array. [allow-none]
1456 	 * children = an array of
1457 	 * GVariant pointers, the children. [allow-none][array length=n_children]
1458 	 * Throws: ConstructionException GTK+ fails to create the object.
1459 	 */
1460 	public this (VariantType childType, Variant[] children)
1461 	{
1462 		// GVariant * g_variant_new_array (const GVariantType *child_type,  GVariant * const *children,  gsize n_children);
1463 		
1464 		GVariant*[] childrenArray = new GVariant*[children.length];
1465 		for ( int i = 0; i < children.length ; i++ )
1466 		{
1467 			childrenArray[i] = children[i].getVariantStruct();
1468 		}
1469 		
1470 		auto p = g_variant_new_array((childType is null) ? null : childType.getVariantTypeStruct(), childrenArray.ptr, cast(int) children.length);
1471 		if(p is null)
1472 		{
1473 			throw new ConstructionException("null returned by g_variant_new_array((childType is null) ? null : childType.getVariantTypeStruct(), childrenArray.ptr, cast(int) children.length)");
1474 		}
1475 		this(cast(GVariant*) p);
1476 	}
1477 	
1478 	/**
1479 	 * Creates a new tuple GVariant out of the items in children. The
1480 	 * type is determined from the types of children. No entry in the
1481 	 * children array may be NULL.
1482 	 * If n_children is 0 then the unit tuple is constructed.
1483 	 * If the children are floating references (see g_variant_ref_sink()), the
1484 	 * new instance takes ownership of them as if via g_variant_ref_sink().
1485 	 * Since 2.24
1486 	 * Params:
1487 	 * children = the items to make the tuple out of. [array length=n_children]
1488 	 * Throws: ConstructionException GTK+ fails to create the object.
1489 	 */
1490 	public this (Variant[] children)
1491 	{
1492 		// GVariant * g_variant_new_tuple (GVariant * const *children,  gsize n_children);
1493 		
1494 		GVariant*[] childrenArray = new GVariant*[children.length];
1495 		for ( int i = 0; i < children.length ; i++ )
1496 		{
1497 			childrenArray[i] = children[i].getVariantStruct();
1498 		}
1499 		
1500 		auto p = g_variant_new_tuple(childrenArray.ptr, cast(int) children.length);
1501 		if(p is null)
1502 		{
1503 			throw new ConstructionException("null returned by g_variant_new_tuple(childrenArray.ptr, cast(int) children.length)");
1504 		}
1505 		this(cast(GVariant*) p);
1506 	}
1507 	
1508 	/**
1509 	 * Creates a new dictionary entry GVariant. key and value must be
1510 	 * non-NULL. key must be a value of a basic type (ie: not a container).
1511 	 * If the key or value are floating references (see g_variant_ref_sink()),
1512 	 * the new instance takes ownership of them as if via g_variant_ref_sink().
1513 	 * Since 2.24
1514 	 * Params:
1515 	 * key = a basic GVariant, the key
1516 	 * value = a GVariant, the value
1517 	 * Throws: ConstructionException GTK+ fails to create the object.
1518 	 */
1519 	public this (Variant key, Variant value)
1520 	{
1521 		// GVariant * g_variant_new_dict_entry (GVariant *key,  GVariant *value);
1522 		auto p = g_variant_new_dict_entry((key is null) ? null : key.getVariantStruct(), (value is null) ? null : value.getVariantStruct());
1523 		if(p is null)
1524 		{
1525 			throw new ConstructionException("null returned by g_variant_new_dict_entry((key is null) ? null : key.getVariantStruct(), (value is null) ? null : value.getVariantStruct())");
1526 		}
1527 		this(cast(GVariant*) p);
1528 	}
1529 	
1530 	/**
1531 	 * Provides access to the serialised data for an array of fixed-sized
1532 	 * items.
1533 	 * value must be an array with fixed-sized elements. Numeric types are
1534 	 * fixed-size as are tuples containing only other fixed-sized types.
1535 	 * element_size must be the size of a single element in the array. For
1536 	 * example, if calling this function for an array of 32 bit integers,
1537 	 * you might say sizeof (gint32). This value isn't used
1538 	 * except for the purpose of a double-check that the form of the
1539 	 * serialised data matches the caller's expectation.
1540 	 * n_elements, which must be non-NULL is set equal to the number of
1541 	 * items in the array.
1542 	 * Since 2.32
1543 	 * Params:
1544 	 * elementType = the GVariantType of each element
1545 	 * elements = a pointer to the fixed array of contiguous elements
1546 	 * elementSize = the size of each element
1547 	 * Throws: ConstructionException GTK+ fails to create the object.
1548 	 */
1549 	public this (VariantType elementType, void[] elements, gsize elementSize)
1550 	{
1551 		// GVariant * g_variant_new_fixed_array (const GVariantType *element_type,  gconstpointer elements,  gsize n_elements,  gsize element_size);
1552 		auto p = g_variant_new_fixed_array((elementType is null) ? null : elementType.getVariantTypeStruct(), elements.ptr, cast(int) elements.length, elementSize);
1553 		if(p is null)
1554 		{
1555 			throw new ConstructionException("null returned by g_variant_new_fixed_array((elementType is null) ? null : elementType.getVariantTypeStruct(), elements.ptr, cast(int) elements.length, elementSize)");
1556 		}
1557 		this(cast(GVariant*) p);
1558 	}
1559 	
1560 	/**
1561 	 * Given a maybe-typed GVariant instance, extract its value. If the
1562 	 * value is Nothing, then this function returns NULL.
1563 	 * Since 2.24
1564 	 * Returns: the contents of value, or NULL. [allow-none][transfer full]
1565 	 */
1566 	public Variant getMaybe()
1567 	{
1568 		// GVariant * g_variant_get_maybe (GVariant *value);
1569 		auto p = g_variant_get_maybe(gVariant);
1570 		
1571 		if(p is null)
1572 		{
1573 			return null;
1574 		}
1575 		
1576 		return new Variant(cast(GVariant*) p);
1577 	}
1578 	
1579 	/**
1580 	 * Determines the number of children in a container GVariant instance.
1581 	 * This includes variants, maybes, arrays, tuples and dictionary
1582 	 * entries. It is an error to call this function on any other type of
1583 	 * GVariant.
1584 	 * For variants, the return value is always 1. For values with maybe
1585 	 * types, it is always zero or one. For arrays, it is the length of the
1586 	 * array. For tuples it is the number of tuple items (which depends
1587 	 * only on the type). For dictionary entries, it is always 2
1588 	 * This function is O(1).
1589 	 * Since 2.24
1590 	 * Returns: the number of children in the container
1591 	 */
1592 	public gsize nChildren()
1593 	{
1594 		// gsize g_variant_n_children (GVariant *value);
1595 		return g_variant_n_children(gVariant);
1596 	}
1597 	
1598 	/**
1599 	 * Reads a child item out of a container GVariant instance. This
1600 	 * includes variants, maybes, arrays, tuples and dictionary
1601 	 * entries. It is an error to call this function on any other type of
1602 	 * GVariant.
1603 	 * It is an error if index_ is greater than the number of child items
1604 	 * in the container. See g_variant_n_children().
1605 	 * The returned value is never floating. You should free it with
1606 	 * g_variant_unref() when you're done with it.
1607 	 * This function is O(1).
1608 	 * Since 2.24
1609 	 * Params:
1610 	 * index = the index of the child to fetch
1611 	 * Returns: the child at the specified index. [transfer full]
1612 	 */
1613 	public Variant getChildValue(gsize index)
1614 	{
1615 		// GVariant * g_variant_get_child_value (GVariant *value,  gsize index_);
1616 		auto p = g_variant_get_child_value(gVariant, index);
1617 		
1618 		if(p is null)
1619 		{
1620 			return null;
1621 		}
1622 		
1623 		return new Variant(cast(GVariant*) p);
1624 	}
1625 	
1626 	/**
1627 	 * Looks up a value in a dictionary GVariant.
1628 	 * This function works with dictionaries of the type
1629 	 * a{s*} (and equally well with type
1630 	 * a{o*}, but we only further discuss the string case
1631 	 * for sake of clarity).
1632 	 * In the event that dictionary has the type a{sv},
1633 	 * the expected_type string specifies what type of value is expected to
1634 	 * be inside of the variant. If the value inside the variant has a
1635 	 * different type then NULL is returned. In the event that dictionary
1636 	 * has a value type other than v then expected_type
1637 	 * must directly match the key type and it is used to unpack the value
1638 	 * directly or an error occurs.
1639 	 * In either case, if key is not found in dictionary, NULL is
1640 	 * returned.
1641 	 * If the key is found and the value has the correct type, it is
1642 	 * returned. If expected_type was specified then any non-NULL return
1643 	 * value will have this type.
1644 	 * Since 2.28
1645 	 * Params:
1646 	 * key = the key to lookup in the dictionary
1647 	 * expectedType = a GVariantType, or NULL. [allow-none]
1648 	 * Returns: the value of the dictionary key, or NULL. [transfer full]
1649 	 */
1650 	public Variant lookupValue(string key, VariantType expectedType)
1651 	{
1652 		// GVariant * g_variant_lookup_value (GVariant *dictionary,  const gchar *key,  const GVariantType *expected_type);
1653 		auto p = g_variant_lookup_value(gVariant, Str.toStringz(key), (expectedType is null) ? null : expectedType.getVariantTypeStruct());
1654 		
1655 		if(p is null)
1656 		{
1657 			return null;
1658 		}
1659 		
1660 		return new Variant(cast(GVariant*) p);
1661 	}
1662 	
1663 	/**
1664 	 * Provides access to the serialised data for an array of fixed-sized
1665 	 * items.
1666 	 * value must be an array with fixed-sized elements. Numeric types are
1667 	 * fixed-size, as are tuples containing only other fixed-sized types.
1668 	 * element_size must be the size of a single element in the array,
1669 	 * as given by the section on
1670 	 * Serialised Data
1671 	 * Memory.
1672 	 * In particular, arrays of these fixed-sized types can be interpreted
1673 	 * as an array of the given C type, with element_size set to
1674 	 * Since 2.24
1675 	 * Params:
1676 	 * nElements = a pointer to the location to store the number of items. [out]
1677 	 * elementSize = the size of each element
1678 	 * Returns: a pointer to the fixed array. [array length=n_elements][transfer none]
1679 	 */
1680 	public void* getFixedArray(gsize* nElements, gsize elementSize)
1681 	{
1682 		// gconstpointer g_variant_get_fixed_array (GVariant *value,  gsize *n_elements,  gsize element_size);
1683 		return g_variant_get_fixed_array(gVariant, nElements, elementSize);
1684 	}
1685 	
1686 	/**
1687 	 * Determines the number of bytes that would be required to store value
1688 	 * with g_variant_store().
1689 	 * If value has a fixed-sized type then this function always returned
1690 	 * that fixed size.
1691 	 * In the case that value is already in serialised form or the size has
1692 	 * already been calculated (ie: this function has been called before)
1693 	 * then this function is O(1). Otherwise, the size is calculated, an
1694 	 * operation which is approximately O(n) in the number of values
1695 	 * involved.
1696 	 * Since 2.24
1697 	 * Returns: the serialised size of value
1698 	 */
1699 	public gsize getSize()
1700 	{
1701 		// gsize g_variant_get_size (GVariant *value);
1702 		return g_variant_get_size(gVariant);
1703 	}
1704 	
1705 	/**
1706 	 * Returns a pointer to the serialised form of a GVariant instance.
1707 	 * The returned data may not be in fully-normalised form if read from an
1708 	 * untrusted source. The returned data must not be freed; it remains
1709 	 * valid for as long as value exists.
1710 	 * If value is a fixed-sized value that was deserialised from a
1711 	 * corrupted serialised container then NULL may be returned. In this
1712 	 * case, the proper thing to do is typically to use the appropriate
1713 	 * number of nul bytes in place of value. If value is not fixed-sized
1714 	 * then NULL is never returned.
1715 	 * In the case that value is already in serialised form, this function
1716 	 * is O(1). If the value is not already in serialised form,
1717 	 * serialisation occurs implicitly and is approximately O(n) in the size
1718 	 * of the result.
1719 	 * To deserialise the data returned by this function, in addition to the
1720 	 * serialised data, you must know the type of the GVariant, and (if the
1721 	 * machine might be different) the endianness of the machine that stored
1722 	 * it. As a result, file formats or network messages that incorporate
1723 	 * serialised GVariants must include this information either
1724 	 * implicitly (for instance "the file always contains a
1725 	 * G_VARIANT_TYPE_VARIANT and it is always in little-endian order") or
1726 	 * explicitly (by storing the type and/or endianness in addition to the
1727 	 * serialised data).
1728 	 * Since 2.24
1729 	 * Returns: the serialised form of value, or NULL. [transfer none]
1730 	 */
1731 	public void* getData()
1732 	{
1733 		// gconstpointer g_variant_get_data (GVariant *value);
1734 		return g_variant_get_data(gVariant);
1735 	}
1736 	
1737 	/**
1738 	 * Returns a pointer to the serialised form of a GVariant instance.
1739 	 * The semantics of this function are exactly the same as
1740 	 * g_variant_get_data(), except that the returned GBytes holds
1741 	 * a reference to the variant data.
1742 	 * Since 2.36
1743 	 * Returns: A new GBytes representing the variant data. [transfer full]
1744 	 */
1745 	public Bytes getDataAsBytes()
1746 	{
1747 		// GBytes * g_variant_get_data_as_bytes (GVariant *value);
1748 		auto p = g_variant_get_data_as_bytes(gVariant);
1749 		
1750 		if(p is null)
1751 		{
1752 			return null;
1753 		}
1754 		
1755 		return new Bytes(cast(GBytes*) p);
1756 	}
1757 	
1758 	/**
1759 	 * Stores the serialised form of value at data. data should be
1760 	 * large enough. See g_variant_get_size().
1761 	 * The stored data is in machine native byte order but may not be in
1762 	 * fully-normalised form if read from an untrusted source. See
1763 	 * g_variant_get_normal_form() for a solution.
1764 	 * As with g_variant_get_data(), to be able to deserialise the
1765 	 * serialised variant successfully, its type and (if the destination
1766 	 * machine might be different) its endianness must also be available.
1767 	 * This function is approximately O(n) in the size of data.
1768 	 * Since 2.24
1769 	 * Params:
1770 	 * data = the location to store the serialised data at
1771 	 */
1772 	public void store(void* data)
1773 	{
1774 		// void g_variant_store (GVariant *value,  gpointer data);
1775 		g_variant_store(gVariant, data);
1776 	}
1777 	
1778 	/**
1779 	 * Creates a new GVariant instance from serialised data.
1780 	 * type is the type of GVariant instance that will be constructed.
1781 	 * The interpretation of data depends on knowing the type.
1782 	 * data is not modified by this function and must remain valid with an
1783 	 * unchanging value until such a time as notify is called with
1784 	 * user_data. If the contents of data change before that time then
1785 	 * the result is undefined.
1786 	 * If data is trusted to be serialised data in normal form then
1787 	 * trusted should be TRUE. This applies to serialised data created
1788 	 * within this process or read from a trusted location on the disk (such
1789 	 * as a file installed in /usr/lib alongside your application). You
1790 	 * should set trusted to FALSE if data is read from the network, a
1791 	 * file in the user's home directory, etc.
1792 	 * If data was not stored in this machine's native endianness, any multi-byte
1793 	 * numeric values in the returned variant will also be in non-native
1794 	 * endianness. g_variant_byteswap() can be used to recover the original values.
1795 	 * notify will be called with user_data when data is no longer
1796 	 * needed. The exact time of this call is unspecified and might even be
1797 	 * before this function returns.
1798 	 * Since 2.24
1799 	 * Params:
1800 	 * type = a definite GVariantType
1801 	 * data = the serialised data. [array length=size][element-type guint8]
1802 	 * size = the size of data
1803 	 * trusted = TRUE if data is definitely in normal form
1804 	 * notify = function to call when data is no longer needed. [scope async]
1805 	 * userData = data for notify
1806 	 * Throws: ConstructionException GTK+ fails to create the object.
1807 	 */
1808 	public this (VariantType type, void* data, gsize size, int trusted, GDestroyNotify notify, void* userData)
1809 	{
1810 		// GVariant * g_variant_new_from_data (const GVariantType *type,  gconstpointer data,  gsize size,  gboolean trusted,  GDestroyNotify notify,  gpointer user_data);
1811 		auto p = g_variant_new_from_data((type is null) ? null : type.getVariantTypeStruct(), data, size, trusted, notify, userData);
1812 		if(p is null)
1813 		{
1814 			throw new ConstructionException("null returned by g_variant_new_from_data((type is null) ? null : type.getVariantTypeStruct(), data, size, trusted, notify, userData)");
1815 		}
1816 		this(cast(GVariant*) p);
1817 	}
1818 	
1819 	/**
1820 	 * Constructs a new serialised-mode GVariant instance. This is the
1821 	 * inner interface for creation of new serialised values that gets
1822 	 * called from various functions in gvariant.c.
1823 	 * A reference is taken on bytes.
1824 	 * Since 2.36
1825 	 * Params:
1826 	 * type = a GVariantType
1827 	 * bytes = a GBytes
1828 	 * trusted = if the contents of bytes are trusted
1829 	 * Throws: ConstructionException GTK+ fails to create the object.
1830 	 */
1831 	public this (VariantType type, Bytes bytes, int trusted)
1832 	{
1833 		// GVariant * g_variant_new_from_bytes (const GVariantType *type,  GBytes *bytes,  gboolean trusted);
1834 		auto p = g_variant_new_from_bytes((type is null) ? null : type.getVariantTypeStruct(), (bytes is null) ? null : bytes.getBytesStruct(), trusted);
1835 		if(p is null)
1836 		{
1837 			throw new ConstructionException("null returned by g_variant_new_from_bytes((type is null) ? null : type.getVariantTypeStruct(), (bytes is null) ? null : bytes.getBytesStruct(), trusted)");
1838 		}
1839 		this(cast(GVariant*) p);
1840 	}
1841 	
1842 	/**
1843 	 * Performs a byteswapping operation on the contents of value. The
1844 	 * result is that all multi-byte numeric data contained in value is
1845 	 * byteswapped. That includes 16, 32, and 64bit signed and unsigned
1846 	 * integers as well as file handles and double precision floating point
1847 	 * values.
1848 	 * This function is an identity mapping on any value that does not
1849 	 * contain multi-byte numeric data. That include strings, booleans,
1850 	 * bytes and containers containing only these things (recursively).
1851 	 * The returned value is always in normal form and is marked as trusted.
1852 	 * Since 2.24
1853 	 * Returns: the byteswapped form of value. [transfer full]
1854 	 */
1855 	public Variant byteswap()
1856 	{
1857 		// GVariant * g_variant_byteswap (GVariant *value);
1858 		auto p = g_variant_byteswap(gVariant);
1859 		
1860 		if(p is null)
1861 		{
1862 			return null;
1863 		}
1864 		
1865 		return new Variant(cast(GVariant*) p);
1866 	}
1867 	
1868 	/**
1869 	 * Gets a GVariant instance that has the same value as value and is
1870 	 * trusted to be in normal form.
1871 	 * If value is already trusted to be in normal form then a new
1872 	 * reference to value is returned.
1873 	 * If value is not already trusted, then it is scanned to check if it
1874 	 * is in normal form. If it is found to be in normal form then it is
1875 	 * marked as trusted and a new reference to it is returned.
1876 	 * If value is found not to be in normal form then a new trusted
1877 	 * GVariant is created with the same value as value.
1878 	 * It makes sense to call this function if you've received GVariant
1879 	 * data from untrusted sources and you want to ensure your serialised
1880 	 * output is definitely in normal form.
1881 	 * Since 2.24
1882 	 * Returns: a trusted GVariant. [transfer full]
1883 	 */
1884 	public Variant getNormalForm()
1885 	{
1886 		// GVariant * g_variant_get_normal_form (GVariant *value);
1887 		auto p = g_variant_get_normal_form(gVariant);
1888 		
1889 		if(p is null)
1890 		{
1891 			return null;
1892 		}
1893 		
1894 		return new Variant(cast(GVariant*) p);
1895 	}
1896 	
1897 	/**
1898 	 * Checks if value is in normal form.
1899 	 * The main reason to do this is to detect if a given chunk of
1900 	 * serialised data is in normal form: load the data into a GVariant
1901 	 * using g_variant_new_from_data() and then use this function to
1902 	 * check.
1903 	 * If value is found to be in normal form then it will be marked as
1904 	 * being trusted. If the value was already marked as being trusted then
1905 	 * this function will immediately return TRUE.
1906 	 * Since 2.24
1907 	 * Returns: TRUE if value is in normal form
1908 	 */
1909 	public int isNormalForm()
1910 	{
1911 		// gboolean g_variant_is_normal_form (GVariant *value);
1912 		return g_variant_is_normal_form(gVariant);
1913 	}
1914 	
1915 	/**
1916 	 * Generates a hash value for a GVariant instance.
1917 	 * The output of this function is guaranteed to be the same for a given
1918 	 * value only per-process. It may change between different processor
1919 	 * architectures or even different versions of GLib. Do not use this
1920 	 * function as a basis for building protocols or file formats.
1921 	 * The type of value is gconstpointer only to allow use of this
1922 	 * function with GHashTable. value must be a GVariant.
1923 	 * Since 2.24
1924 	 * Params:
1925 	 * value = a basic GVariant value as a gconstpointer. [type GVariant]
1926 	 * Returns: a hash value corresponding to value
1927 	 */
1928 	public static uint hash(void* value)
1929 	{
1930 		// guint g_variant_hash (gconstpointer value);
1931 		return g_variant_hash(value);
1932 	}
1933 	
1934 	/**
1935 	 * Checks if one and two have the same type and value.
1936 	 * The types of one and two are gconstpointer only to allow use of
1937 	 * this function with GHashTable. They must each be a GVariant.
1938 	 * Since 2.24
1939 	 * Params:
1940 	 * one = a GVariant instance. [type GVariant]
1941 	 * two = a GVariant instance. [type GVariant]
1942 	 * Returns: TRUE if one and two are equal
1943 	 */
1944 	public static int equal(void* one, void* two)
1945 	{
1946 		// gboolean g_variant_equal (gconstpointer one,  gconstpointer two);
1947 		return g_variant_equal(one, two);
1948 	}
1949 	
1950 	/**
1951 	 * Pretty-prints value in the format understood by g_variant_parse().
1952 	 * The format is described here.
1953 	 * If type_annotate is TRUE, then type information is included in
1954 	 * the output.
1955 	 * Since 2.24
1956 	 * Params:
1957 	 * typeAnnotate = TRUE if type information should be included in
1958 	 * the output
1959 	 * Returns: a newly-allocated string holding the result. [transfer full]
1960 	 */
1961 	public string print(int typeAnnotate)
1962 	{
1963 		// gchar * g_variant_print (GVariant *value,  gboolean type_annotate);
1964 		return Str.toString(g_variant_print(gVariant, typeAnnotate));
1965 	}
1966 	
1967 	/**
1968 	 * Behaves as g_variant_print(), but operates on a GString.
1969 	 * If string is non-NULL then it is appended to and returned. Else,
1970 	 * a new empty GString is allocated and it is returned.
1971 	 * Since 2.24
1972 	 * Params:
1973 	 * string = a GString, or NULL. [allow-none][default NULL]
1974 	 * typeAnnotate = TRUE if type information should be included in
1975 	 * the output
1976 	 * Returns: a GString containing the string
1977 	 */
1978 	public StringG printString(StringG string, int typeAnnotate)
1979 	{
1980 		// GString * g_variant_print_string (GVariant *value,  GString *string,  gboolean type_annotate);
1981 		auto p = g_variant_print_string(gVariant, (string is null) ? null : string.getStringGStruct(), typeAnnotate);
1982 		
1983 		if(p is null)
1984 		{
1985 			return null;
1986 		}
1987 		
1988 		return new StringG(cast(GString*) p);
1989 	}
1990 	
1991 	/**
1992 	 * Parses a GVariant from a text representation.
1993 	 * A single GVariant is parsed from the content of text.
1994 	 * The format is described here.
1995 	 * The memory at limit will never be accessed and the parser behaves as
1996 	 * if the character at limit is the nul terminator. This has the
1997 	 * effect of bounding text.
1998 	 * If endptr is non-NULL then text is permitted to contain data
1999 	 * following the value that this function parses and endptr will be
2000 	 * updated to point to the first character past the end of the text
2001 	 * parsed by this function. If endptr is NULL and there is extra data
2002 	 * then an error is returned.
2003 	 * If type is non-NULL then the value will be parsed to have that
2004 	 * type. This may result in additional parse errors (in the case that
2005 	 * the parsed value doesn't fit the type) but may also result in fewer
2006 	 * errors (in the case that the type would have been ambiguous, such as
2007 	 * with empty arrays).
2008 	 * In the event that the parsing is successful, the resulting GVariant
2009 	 * is returned.
2010 	 * In case of any error, NULL will be returned. If error is non-NULL
2011 	 * then it will be set to reflect the error that occurred.
2012 	 * Officially, the language understood by the parser is "any string
2013 	 * produced by g_variant_print()".
2014 	 * Params:
2015 	 * type = a GVariantType, or NULL. [allow-none]
2016 	 * text = a string containing a GVariant in text form
2017 	 * limit = a pointer to the end of text, or NULL. [allow-none]
2018 	 * endptr = a location to store the end pointer, or NULL. [allow-none]
2019 	 * Returns: a reference to a GVariant, or NULL
2020 	 * Throws: GException on failure.
2021 	 */
2022 	public static Variant parse(VariantType type, string text, string limit, out string endptr)
2023 	{
2024 		// GVariant * g_variant_parse (const GVariantType *type,  const gchar *text,  const gchar *limit,  const gchar **endptr,  GError **error);
2025 		char* outendptr = null;
2026 		GError* err = null;
2027 		
2028 		auto p = g_variant_parse((type is null) ? null : type.getVariantTypeStruct(), Str.toStringz(text), Str.toStringz(limit), &outendptr, &err);
2029 		
2030 		if (err !is null)
2031 		{
2032 			throw new GException( new ErrorG(err) );
2033 		}
2034 		
2035 		endptr = Str.toString(outendptr);
2036 		
2037 		if(p is null)
2038 		{
2039 			return null;
2040 		}
2041 		
2042 		return new Variant(cast(GVariant*) p);
2043 	}
2044 	
2045 	/**
2046 	 * Parses format and returns the result.
2047 	 * This is the version of g_variant_new_parsed() intended to be used
2048 	 * from libraries.
2049 	 * The return value will be floating if it was a newly created GVariant
2050 	 * instance. In the case that format simply specified the collection
2051 	 * of a GVariant pointer (eg: format was "%*") then the collected
2052 	 * GVariant pointer will be returned unmodified, without adding any
2053 	 * additional references.
2054 	 * In order to behave correctly in all cases it is necessary for the
2055 	 * calling function to g_variant_ref_sink() the return result before
2056 	 * returning control to the user that originally provided the pointer.
2057 	 * At this point, the caller will have their own full reference to the
2058 	 * result. This can also be done by adding the result to a container,
2059 	 * or by passing it to another g_variant_new() call.
2060 	 * Params:
2061 	 * format = a text format GVariant
2062 	 * app = a pointer to a va_list
2063 	 * Throws: ConstructionException GTK+ fails to create the object.
2064 	 */
2065 	public this (string format, void** app)
2066 	{
2067 		// GVariant * g_variant_new_parsed_va (const gchar *format,  va_list *app);
2068 		auto p = g_variant_new_parsed_va(Str.toStringz(format), app);
2069 		if(p is null)
2070 		{
2071 			throw new ConstructionException("null returned by g_variant_new_parsed_va(Str.toStringz(format), app)");
2072 		}
2073 		this(cast(GVariant*) p);
2074 	}
2075 }