Sets our main struct and passes it to the parent class.
Creates a new #GtkActionGroup object. The name of the action group is used when associating keybindings[Action-Accel] with the actions.
Adds an action object to the action group. Note that this function does not set up the accel path of the action, which can lead to problems if a user tries to modify the accelerator of a menuitem associated with the action. Therefore you must either set the accel path yourself with gtk_action_set_accel_path(), or use gtk_action_group_add_action_with_accel (..., NULL).
Adds an action object to the action group and sets up the accelerator.
This is a convenience function to create a number of actions and add them to the action group.
This variant of gtk_action_group_add_actions() adds a #GDestroyNotify callback for @user_data.
The ::connect-proxy signal is emitted after connecting a proxy to an action in the group. Note that the proxy may have been connected to a different action before.
The ::disconnect-proxy signal is emitted after disconnecting a proxy from an action in the group.
The ::post-activate signal is emitted just after the @action in the @action_group is activated
The ::pre-activate signal is emitted just before the @action in the @action_group is activated
This is a convenience routine to create a group of radio actions and add them to the action group.
This variant of gtk_action_group_add_radio_actions() adds a #GDestroyNotify callback for @user_data.
This is a convenience function to create a number of toggle actions and add them to the action group.
This variant of gtk_action_group_add_toggle_actions() adds a #GDestroyNotify callback for @user_data.
Gets the accelerator group.
Looks up an action in the action group by name.
Get the main Gtk struct
Gets the name of the action group.
Returns %TRUE if the group is sensitive. The constituent actions can only be logically sensitive (see gtk_action_is_sensitive()) if they are sensitive (see gtk_action_get_sensitive()) and their group is sensitive.
the main Gtk struct as a void*
Returns %TRUE if the group is visible. The constituent actions can only be logically visible (see gtk_action_is_visible()) if they are visible (see gtk_action_get_visible()) and their group is visible.
Lists the actions in the action group.
Removes an action object from the action group.
Sets the accelerator group to be used by every action in this group.
Changes the sensitivity of @action_group
Sets a function to be used for translating the @label and @tooltip of #GtkActionEntrys added by gtk_action_group_add_actions().
Sets the translation domain and uses g_dgettext() for translating the @label and @tooltip of #GtkActionEntrys added by gtk_action_group_add_actions().
Changes the visible of @action_group.
Translates a string using the function set with gtk_action_group_set_translate_func(). This is mainly intended for language bindings.
the main Gtk struct
the main Gtk struct
Get the main Gtk struct
the main Gtk struct as a void*
Gets a D Object from the objects table of associations.
The notify signal is emitted on an object when one of its properties has been changed. Note that getting this signal doesn't guarantee that the value of the property has actually changed, it may also be emitted when the setter for the property is called to reinstate the previous value.
Find the #GParamSpec with the given name for an interface. Generally, the interface vtable passed in as @g_iface will be the default vtable from g_type_default_interface_ref(), or, if you know the interface has already been loaded, g_type_default_interface_peek().
Add a property to an interface; this is only useful for interfaces that are added to GObject-derived types. Adding a property to an interface forces all objects classes with that interface to have a compatible property. The compatible property could be a newly created #GParamSpec, but normally g_object_class_override_property() will be used so that the object class only needs to provide an implementation and inherits the property description, default value, bounds, and so forth from the interface property.
Lists the properties of an interface.Generally, the interface vtable passed in as @g_iface will be the default vtable from g_type_default_interface_ref(), or, if you know the interface has already been loaded, g_type_default_interface_peek().
Increases the reference count of the object by one and sets a callback to be called when all other references to the object are dropped, or when this is already the last reference to the object and another reference is established.
Adds a weak reference from weak_pointer to @object to indicate that the pointer located at @weak_pointer_location is only valid during the lifetime of @object. When the @object is finalized, @weak_pointer will be set to %NULL.
Creates a binding between @source_property on @source and @target_property on @target. Whenever the @source_property is changed the @target_property is updated using the same value. For instance:
Complete version of g_object_bind_property().
Creates a binding between @source_property on @source and @target_property on @target, allowing you to set the transformation functions to be used by the binding.
This is a variant of g_object_get_data() which returns a 'duplicate' of the value. @dup_func defines the meaning of 'duplicate' in this context, it could e.g. take a reference on a ref-counted object.
This is a variant of g_object_get_qdata() which returns a 'duplicate' of the value. @dup_func defines the meaning of 'duplicate' in this context, it could e.g. take a reference on a ref-counted object.
This function is intended for #GObject implementations to re-enforce a floating[floating-ref] object reference. Doing this is seldom required: all #GInitiallyUnowneds are created with a floating reference which usually just needs to be sunken by calling g_object_ref_sink().
Increases the freeze count on @object. If the freeze count is non-zero, the emission of "notify" signals on @object is stopped. The signals are queued until the freeze count is decreased to zero. Duplicate notifications are squashed so that at most one #GObject::notify signal is emitted for each property modified while the object is frozen.
Gets a named field from the objects table of associations (see g_object_set_data()).
Gets a property of an object.
This function gets back user data pointers stored via g_object_set_qdata().
Gets properties of an object.
Gets @n_properties properties for an @object. Obtained properties will be set to @values. All properties must be valid. Warnings will be emitted and undefined behaviour may result if invalid properties are passed in.
Checks whether @object has a floating[floating-ref] reference.
Emits a "notify" signal for the property @property_name on @object.
Emits a "notify" signal for the property specified by @pspec on @object.
Increases the reference count of @object.
Increase the reference count of @object, and possibly remove the floating[floating-ref] reference, if @object has a floating reference.
Removes a reference added with g_object_add_toggle_ref(). The reference count of the object is decreased by one.
Removes a weak reference from @object that was previously added using g_object_add_weak_pointer(). The @weak_pointer_location has to match the one used with g_object_add_weak_pointer().
Compares the user data for the key @key on @object with @oldval, and if they are the same, replaces @oldval with @newval.
Compares the user data for the key @quark on @object with @oldval, and if they are the same, replaces @oldval with @newval.
Releases all references to other objects. This can be used to break reference cycles.
Each object carries around a table of associations from strings to pointers. This function lets you set an association.
Like g_object_set_data() except it adds notification for when the association is destroyed, either by setting it to a different value or when the object is destroyed.
Sets a property on an object.
This sets an opaque, named pointer on an object. The name is specified through a #GQuark (retrived e.g. via g_quark_from_static_string()), and the pointer can be gotten back from the @object with g_object_get_qdata() until the @object is finalized. Setting a previously set user data pointer, overrides (frees) the old pointer set, using #NULL as pointer essentially removes the data stored.
This function works like g_object_set_qdata(), but in addition, a void (*destroy) (gpointer) function may be specified which is called with @data as argument when the @object is finalized, or the data is being overwritten by a call to g_object_set_qdata() with the same @quark.
Sets properties on an object.
Sets @n_properties properties for an @object. Properties to be set will be taken from @values. All properties must be valid. Warnings will be emitted and undefined behaviour may result if invalid properties are passed in.
Remove a specified datum from the object's data associations, without invoking the association's destroy handler.
This function gets back user data pointers stored via g_object_set_qdata() and removes the @data from object without invoking its destroy() function (if any was set). Usually, calling this function is only required to update user data pointers with a destroy notifier, for example: |[<!-- language="C" --> void object_add_to_user_list (GObject *object, const gchar *new_string) { // the quark, naming the object data GQuark quark_string_list = g_quark_from_static_string ("my-string-list"); // retrive the old string list GList *list = g_object_steal_qdata (object, quark_string_list);
Reverts the effect of a previous call to g_object_freeze_notify(). The freeze count is decreased on @object and when it reaches zero, queued "notify" signals are emitted.
Decreases the reference count of @object. When its reference count drops to 0, the object is finalized (i.e. its memory is freed).
This function essentially limits the life time of the @closure to the life time of the object. That is, when the object is finalized, the @closure is invalidated by calling g_closure_invalidate() on it, in order to prevent invocations of the closure with a finalized (nonexisting) object. Also, g_object_ref() and g_object_unref() are added as marshal guards to the @closure, to ensure that an extra reference count is held on @object during invocation of the @closure. Usually, this function will be called on closures that use this @object as closure data.
Adds a weak reference callback to an object. Weak references are used for notification when an object is finalized. They are called "weak references" because they allow you to safely hold a pointer to an object without calling g_object_ref() (g_object_ref() adds a strong reference, that is, forces the object to stay alive).
Removes a weak reference callback to an object.
Clears a reference to a #GObject.
Get the main Gtk struct
the main Gtk struct as a void*
Adds a child to @buildable. @type is an optional string describing how the child should be added.
Constructs a child of @buildable with the name @name.
This is similar to gtk_buildable_parser_finished() but is called once for each custom tag handled by the @buildable.
This is called at the end of each custom element handled by the buildable.
This is called for each unknown element under <child>.
Get the internal child called @childname of the @buildable object.
Gets the name of the @buildable object.
Called when the builder finishes the parsing of a [GtkBuilder UI definition][BUILDER-UI]. Note that this will be called once for each time gtk_builder_add_from_file() or gtk_builder_add_from_string() is called on a builder.
Sets the property name @name to @value on the @buildable object.
Sets the name of the @buildable object.
Actions are organised into groups. An action group is essentially a map from names to #GtkAction objects.
All actions that would make sense to use in a particular context should be in a single group. Multiple action groups may be used for a particular user interface. In fact, it is expected that most nontrivial applications will make use of multiple groups. For example, in an application that can edit multiple documents, one group holding global actions (e.g. quit, about, new), and one group per document holding actions that act on that document (eg. save, cut/copy/paste, etc). Each window’s menus would be constructed from a combination of two action groups.
Accelerators ## {#Action-Accel}
Accelerators are handled by the GTK+ accelerator map. All actions are assigned an accelerator path (which normally has the form <Actions>/group-name/action-name) and a shortcut is associated with this accelerator path. All menuitems and toolitems take on this accelerator path. The GTK+ accelerator map code makes sure that the correct shortcut is displayed next to the menu item.
GtkActionGroup as GtkBuildable # {#GtkActionGroup-BUILDER-UI}
The #GtkActionGroup implementation of the #GtkBuildable interface accepts #GtkAction objects as <child> elements in UI definitions.
Note that it is probably more common to define actions and action groups in the code, since they are directly related to what the code can do.
The GtkActionGroup implementation of the GtkBuildable interface supports a custom <accelerator> element, which has attributes named “key“ and “modifiers“ and allows to specify accelerators. This is similar to the <accelerator> element of #GtkWidget, the main difference is that it doesn’t allow you to specify a signal.
## A #GtkDialog UI definition fragment. ## |[ <object class="GtkActionGroup" id="actiongroup"> <child> <object class="GtkAction" id="About"> <property name="name">About</property> <property name="stock_id">gtk-about</property> <signal handler="about_activate" name="activate"/> </object> <accelerator key="F1" modifiers="GDK_CONTROL_MASK | GDK_SHIFT_MASK"/> </child> </object> ]|