1 /*
2  * This file is part of gtkD.
3  *
4  * gtkD is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU Lesser General Public License
6  * as published by the Free Software Foundation; either version 3
7  * of the License, or (at your option) any later version, with
8  * some exceptions, please read the COPYING file.
9  *
10  * gtkD is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU Lesser General Public License for more details.
14  *
15  * You should have received a copy of the GNU Lesser General Public License
16  * along with gtkD; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110, USA
18  */
19 
20 // generated automatically - do not change
21 // find conversion definition on APILookup.txt
22 // implement new conversion functionalities on the wrap.utils pakage
23 
24 
25 module gstreamer.Utils;
26 
27 private import glib.MemorySlice;
28 private import glib.Str;
29 private import gobject.ObjectG;
30 private import gobject.Value;
31 private import gobject.ValueArray;
32 private import gstreamer.Plugin;
33 private import gstreamer.c.functions;
34 public  import gstreamer.c.types;
35 public  import gstreamerc.gstreamertypes;
36 
37 
38 /** */
39 public struct Utils
40 {
41 
42 	/**
43 	 * Searches inside @array for @search_data by using the comparison function
44 	 * @search_func. @array must be sorted ascending.
45 	 *
46 	 * As @search_data is always passed as second argument to @search_func it's
47 	 * not required that @search_data has the same type as the array elements.
48 	 *
49 	 * The complexity of this search function is O(log (num_elements)).
50 	 *
51 	 * Params:
52 	 *     array = the sorted input array
53 	 *     numElements = number of elements in the array
54 	 *     elementSize = size of every element in bytes
55 	 *     searchFunc = function to compare two elements, @search_data will always be passed as second argument
56 	 *     mode = search mode that should be used
57 	 *     searchData = element that should be found
58 	 *     userData = data to pass to @search_func
59 	 *
60 	 * Returns: The address of the found
61 	 *     element or %NULL if nothing was found
62 	 */
63 	public static void* arrayBinarySearch(void* array, uint numElements, size_t elementSize, GCompareDataFunc searchFunc, GstSearchMode mode, void* searchData, void* userData)
64 	{
65 		return gst_util_array_binary_search(array, numElements, elementSize, searchFunc, mode, searchData, userData);
66 	}
67 
68 	/**
69 	 * Transforms a #gdouble to a fraction and simplifies
70 	 * the result.
71 	 *
72 	 * Params:
73 	 *     src = #gdouble to transform
74 	 *     destN = pointer to a #gint to hold the result numerator
75 	 *     destD = pointer to a #gint to hold the result denominator
76 	 */
77 	public static void doubleToFraction(double src, out int destN, out int destD)
78 	{
79 		gst_util_double_to_fraction(src, &destN, &destD);
80 	}
81 
82 	/**
83 	 * Dumps the memory block into a hex representation. Useful for debugging.
84 	 *
85 	 * Params:
86 	 *     mem = a pointer to the memory to dump
87 	 */
88 	public static void dumpMem(char[] mem)
89 	{
90 		gst_util_dump_mem(mem.ptr, cast(uint)mem.length);
91 	}
92 
93 	/**
94 	 * Adds the fractions @a_n/@a_d and @b_n/@b_d and stores
95 	 * the result in @res_n and @res_d.
96 	 *
97 	 * Params:
98 	 *     aN = Numerator of first value
99 	 *     aD = Denominator of first value
100 	 *     bN = Numerator of second value
101 	 *     bD = Denominator of second value
102 	 *     resN = Pointer to #gint to hold the result numerator
103 	 *     resD = Pointer to #gint to hold the result denominator
104 	 *
105 	 * Returns: %FALSE on overflow, %TRUE otherwise.
106 	 */
107 	public static bool fractionAdd(int aN, int aD, int bN, int bD, out int resN, out int resD)
108 	{
109 		return gst_util_fraction_add(aN, aD, bN, bD, &resN, &resD) != 0;
110 	}
111 
112 	/**
113 	 * Compares the fractions @a_n/@a_d and @b_n/@b_d and returns
114 	 * -1 if a < b, 0 if a = b and 1 if a > b.
115 	 *
116 	 * Params:
117 	 *     aN = Numerator of first value
118 	 *     aD = Denominator of first value
119 	 *     bN = Numerator of second value
120 	 *     bD = Denominator of second value
121 	 *
122 	 * Returns: -1 if a < b; 0 if a = b; 1 if a > b.
123 	 */
124 	public static int fractionCompare(int aN, int aD, int bN, int bD)
125 	{
126 		return gst_util_fraction_compare(aN, aD, bN, bD);
127 	}
128 
129 	/**
130 	 * Multiplies the fractions @a_n/@a_d and @b_n/@b_d and stores
131 	 * the result in @res_n and @res_d.
132 	 *
133 	 * Params:
134 	 *     aN = Numerator of first value
135 	 *     aD = Denominator of first value
136 	 *     bN = Numerator of second value
137 	 *     bD = Denominator of second value
138 	 *     resN = Pointer to #gint to hold the result numerator
139 	 *     resD = Pointer to #gint to hold the result denominator
140 	 *
141 	 * Returns: %FALSE on overflow, %TRUE otherwise.
142 	 */
143 	public static bool fractionMultiply(int aN, int aD, int bN, int bD, out int resN, out int resD)
144 	{
145 		return gst_util_fraction_multiply(aN, aD, bN, bD, &resN, &resD) != 0;
146 	}
147 
148 	/**
149 	 * Transforms a fraction to a #gdouble.
150 	 *
151 	 * Params:
152 	 *     srcN = Fraction numerator as #gint
153 	 *     srcD = Fraction denominator #gint
154 	 *     dest = pointer to a #gdouble for the result
155 	 */
156 	public static void fractionToDouble(int srcN, int srcD, out double dest)
157 	{
158 		gst_util_fraction_to_double(srcN, srcD, &dest);
159 	}
160 
161 	/** */
162 	public static ulong gdoubleToGuint64(double value)
163 	{
164 		return gst_util_gdouble_to_guint64(value);
165 	}
166 
167 	/**
168 	 * Get a timestamp as GstClockTime to be used for interval measurements.
169 	 * The timestamp should not be interpreted in any other way.
170 	 *
171 	 * Returns: the timestamp
172 	 */
173 	public static GstClockTime getTimestamp()
174 	{
175 		return gst_util_get_timestamp();
176 	}
177 
178 	/**
179 	 * Calculates the greatest common divisor of @a
180 	 * and @b.
181 	 *
182 	 * Params:
183 	 *     a = First value as #gint
184 	 *     b = Second value as #gint
185 	 *
186 	 * Returns: Greatest common divisor of @a and @b
187 	 */
188 	public static int greatestCommonDivisor(int a, int b)
189 	{
190 		return gst_util_greatest_common_divisor(a, b);
191 	}
192 
193 	/**
194 	 * Calculates the greatest common divisor of @a
195 	 * and @b.
196 	 *
197 	 * Params:
198 	 *     a = First value as #gint64
199 	 *     b = Second value as #gint64
200 	 *
201 	 * Returns: Greatest common divisor of @a and @b
202 	 */
203 	public static long greatestCommonDivisorInt64(long a, long b)
204 	{
205 		return gst_util_greatest_common_divisor_int64(a, b);
206 	}
207 
208 	/**
209 	 * Return a constantly incrementing group id.
210 	 *
211 	 * This function is used to generate a new group-id for the
212 	 * stream-start event.
213 	 *
214 	 * This function never returns %GST_GROUP_ID_INVALID (which is 0)
215 	 *
216 	 * Returns: A constantly incrementing unsigned integer, which might
217 	 *     overflow back to 0 at some point.
218 	 */
219 	public static uint groupIdNext()
220 	{
221 		return gst_util_group_id_next();
222 	}
223 
224 	/** */
225 	public static double guint64ToGdouble(ulong value)
226 	{
227 		return gst_util_guint64_to_gdouble(value);
228 	}
229 
230 	/**
231 	 * Compare two sequence numbers, handling wraparound.
232 	 *
233 	 * The current implementation just returns (gint32)(@s1 - @s2).
234 	 *
235 	 * Params:
236 	 *     s1 = A sequence number.
237 	 *     s2 = Another sequence number.
238 	 *
239 	 * Returns: A negative number if @s1 is before @s2, 0 if they are equal, or a
240 	 *     positive number if @s1 is after @s2.
241 	 */
242 	public static int seqnumCompare(uint s1, uint s2)
243 	{
244 		return gst_util_seqnum_compare(s1, s2);
245 	}
246 
247 	/**
248 	 * Return a constantly incrementing sequence number.
249 	 *
250 	 * This function is used internally to GStreamer to be able to determine which
251 	 * events and messages are "the same". For example, elements may set the seqnum
252 	 * on a segment-done message to be the same as that of the last seek event, to
253 	 * indicate that event and the message correspond to the same segment.
254 	 *
255 	 * This function never returns %GST_SEQNUM_INVALID (which is 0).
256 	 *
257 	 * Returns: A constantly incrementing 32-bit unsigned integer, which might
258 	 *     overflow at some point. Use gst_util_seqnum_compare() to make sure
259 	 *     you handle wraparound correctly.
260 	 */
261 	public static uint seqnumNext()
262 	{
263 		return gst_util_seqnum_next();
264 	}
265 
266 	/**
267 	 * Converts the string value to the type of the objects argument and
268 	 * sets the argument with it.
269 	 *
270 	 * Note that this function silently returns if @object has no property named
271 	 * @name or when @value cannot be converted to the type of the property.
272 	 *
273 	 * Params:
274 	 *     object = the object to set the argument of
275 	 *     name = the name of the argument to set
276 	 *     value = the string value to set
277 	 */
278 	public static void setObjectArg(ObjectG object, string name, string value)
279 	{
280 		gst_util_set_object_arg((object is null) ? null : object.getObjectGStruct(), Str.toStringz(name), Str.toStringz(value));
281 	}
282 
283 	/**
284 	 * Converts the string to the type of the value and
285 	 * sets the value with it.
286 	 *
287 	 * Note that this function is dangerous as it does not return any indication
288 	 * if the conversion worked or not.
289 	 *
290 	 * Params:
291 	 *     value = the value to set
292 	 *     valueStr = the string to get the value from
293 	 */
294 	public static void setValueFromString(out Value value, string valueStr)
295 	{
296 		GValue* outvalue = sliceNew!GValue();
297 
298 		gst_util_set_value_from_string(outvalue, Str.toStringz(valueStr));
299 
300 		value = ObjectG.getDObject!(Value)(outvalue, true);
301 	}
302 
303 	/**
304 	 * Scale @val by the rational number @num / @denom, avoiding overflows and
305 	 * underflows and without loss of precision.
306 	 *
307 	 * This function can potentially be very slow if val and num are both
308 	 * greater than G_MAXUINT32.
309 	 *
310 	 * Params:
311 	 *     val = the number to scale
312 	 *     num = the numerator of the scale ratio
313 	 *     denom = the denominator of the scale ratio
314 	 *
315 	 * Returns: @val * @num / @denom.  In the case of an overflow, this
316 	 *     function returns G_MAXUINT64.  If the result is not exactly
317 	 *     representable as an integer it is truncated.  See also
318 	 *     gst_util_uint64_scale_round(), gst_util_uint64_scale_ceil(),
319 	 *     gst_util_uint64_scale_int(), gst_util_uint64_scale_int_round(),
320 	 *     gst_util_uint64_scale_int_ceil().
321 	 */
322 	public static ulong uint64Scale(ulong val, ulong num, ulong denom)
323 	{
324 		return gst_util_uint64_scale(val, num, denom);
325 	}
326 
327 	/**
328 	 * Scale @val by the rational number @num / @denom, avoiding overflows and
329 	 * underflows and without loss of precision.
330 	 *
331 	 * This function can potentially be very slow if val and num are both
332 	 * greater than G_MAXUINT32.
333 	 *
334 	 * Params:
335 	 *     val = the number to scale
336 	 *     num = the numerator of the scale ratio
337 	 *     denom = the denominator of the scale ratio
338 	 *
339 	 * Returns: @val * @num / @denom.  In the case of an overflow, this
340 	 *     function returns G_MAXUINT64.  If the result is not exactly
341 	 *     representable as an integer, it is rounded up.  See also
342 	 *     gst_util_uint64_scale(), gst_util_uint64_scale_round(),
343 	 *     gst_util_uint64_scale_int(), gst_util_uint64_scale_int_round(),
344 	 *     gst_util_uint64_scale_int_ceil().
345 	 */
346 	public static ulong uint64ScaleCeil(ulong val, ulong num, ulong denom)
347 	{
348 		return gst_util_uint64_scale_ceil(val, num, denom);
349 	}
350 
351 	/**
352 	 * Scale @val by the rational number @num / @denom, avoiding overflows and
353 	 * underflows and without loss of precision.  @num must be non-negative and
354 	 * @denom must be positive.
355 	 *
356 	 * Params:
357 	 *     val = guint64 (such as a #GstClockTime) to scale.
358 	 *     num = numerator of the scale factor.
359 	 *     denom = denominator of the scale factor.
360 	 *
361 	 * Returns: @val * @num / @denom.  In the case of an overflow, this
362 	 *     function returns G_MAXUINT64.  If the result is not exactly
363 	 *     representable as an integer, it is truncated.  See also
364 	 *     gst_util_uint64_scale_int_round(), gst_util_uint64_scale_int_ceil(),
365 	 *     gst_util_uint64_scale(), gst_util_uint64_scale_round(),
366 	 *     gst_util_uint64_scale_ceil().
367 	 */
368 	public static ulong uint64ScaleInt(ulong val, int num, int denom)
369 	{
370 		return gst_util_uint64_scale_int(val, num, denom);
371 	}
372 
373 	/**
374 	 * Scale @val by the rational number @num / @denom, avoiding overflows and
375 	 * underflows and without loss of precision.  @num must be non-negative and
376 	 * @denom must be positive.
377 	 *
378 	 * Params:
379 	 *     val = guint64 (such as a #GstClockTime) to scale.
380 	 *     num = numerator of the scale factor.
381 	 *     denom = denominator of the scale factor.
382 	 *
383 	 * Returns: @val * @num / @denom.  In the case of an overflow, this
384 	 *     function returns G_MAXUINT64.  If the result is not exactly
385 	 *     representable as an integer, it is rounded up.  See also
386 	 *     gst_util_uint64_scale_int(), gst_util_uint64_scale_int_round(),
387 	 *     gst_util_uint64_scale(), gst_util_uint64_scale_round(),
388 	 *     gst_util_uint64_scale_ceil().
389 	 */
390 	public static ulong uint64ScaleIntCeil(ulong val, int num, int denom)
391 	{
392 		return gst_util_uint64_scale_int_ceil(val, num, denom);
393 	}
394 
395 	/**
396 	 * Scale @val by the rational number @num / @denom, avoiding overflows and
397 	 * underflows and without loss of precision.  @num must be non-negative and
398 	 * @denom must be positive.
399 	 *
400 	 * Params:
401 	 *     val = guint64 (such as a #GstClockTime) to scale.
402 	 *     num = numerator of the scale factor.
403 	 *     denom = denominator of the scale factor.
404 	 *
405 	 * Returns: @val * @num / @denom.  In the case of an overflow, this
406 	 *     function returns G_MAXUINT64.  If the result is not exactly
407 	 *     representable as an integer, it is rounded to the nearest integer
408 	 *     (half-way cases are rounded up).  See also gst_util_uint64_scale_int(),
409 	 *     gst_util_uint64_scale_int_ceil(), gst_util_uint64_scale(),
410 	 *     gst_util_uint64_scale_round(), gst_util_uint64_scale_ceil().
411 	 */
412 	public static ulong uint64ScaleIntRound(ulong val, int num, int denom)
413 	{
414 		return gst_util_uint64_scale_int_round(val, num, denom);
415 	}
416 
417 	/**
418 	 * Scale @val by the rational number @num / @denom, avoiding overflows and
419 	 * underflows and without loss of precision.
420 	 *
421 	 * This function can potentially be very slow if val and num are both
422 	 * greater than G_MAXUINT32.
423 	 *
424 	 * Params:
425 	 *     val = the number to scale
426 	 *     num = the numerator of the scale ratio
427 	 *     denom = the denominator of the scale ratio
428 	 *
429 	 * Returns: @val * @num / @denom.  In the case of an overflow, this
430 	 *     function returns G_MAXUINT64.  If the result is not exactly
431 	 *     representable as an integer, it is rounded to the nearest integer
432 	 *     (half-way cases are rounded up).  See also gst_util_uint64_scale(),
433 	 *     gst_util_uint64_scale_ceil(), gst_util_uint64_scale_int(),
434 	 *     gst_util_uint64_scale_int_round(), gst_util_uint64_scale_int_ceil().
435 	 */
436 	public static ulong uint64ScaleRound(ulong val, ulong num, ulong denom)
437 	{
438 		return gst_util_uint64_scale_round(val, num, denom);
439 	}
440 
441 	/**
442 	 * Calculates the linear regression of the values @xy and places the
443 	 * result in @m_num, @m_denom, @b and @xbase, representing the function
444 	 * y(x) = m_num/m_denom * (x - xbase) + b
445 	 * that has the least-square distance from all points @x and @y.
446 	 *
447 	 * @r_squared will contain the remaining error.
448 	 *
449 	 * If @temp is not %NULL, it will be used as temporary space for the function,
450 	 * in which case the function works without any allocation at all. If @temp is
451 	 * %NULL, an allocation will take place. @temp should have at least the same
452 	 * amount of memory allocated as @xy, i.e. 2*n*sizeof(GstClockTime).
453 	 *
454 	 * > This function assumes (x,y) values with reasonable large differences
455 	 * > between them. It will not calculate the exact results if the differences
456 	 * > between neighbouring values are too small due to not being able to
457 	 * > represent sub-integer values during the calculations.
458 	 *
459 	 * Params:
460 	 *     xy = Pairs of (x,y) values
461 	 *     temp = Temporary scratch space used by the function
462 	 *     n = number of (x,y) pairs
463 	 *     mNum = numerator of calculated slope
464 	 *     mDenom = denominator of calculated slope
465 	 *     b = Offset at Y-axis
466 	 *     xbase = Offset at X-axis
467 	 *     rSquared = R-squared
468 	 *
469 	 * Returns: %TRUE if the linear regression was successfully calculated
470 	 *
471 	 * Since: 1.12
472 	 */
473 	public static bool calculateLinearRegression(GstClockTime* xy, GstClockTime* temp, uint n, out GstClockTime mNum, out GstClockTime mDenom, out GstClockTime b, out GstClockTime xbase, out double rSquared)
474 	{
475 		return gst_calculate_linear_regression(xy, temp, n, &mNum, &mDenom, &b, &xbase, &rSquared) != 0;
476 	}
477 
478 	/** */
479 	public static bool dynamicTypeRegister(Plugin plugin, GType type)
480 	{
481 		return gst_dynamic_type_register((plugin is null) ? null : plugin.getPluginStruct(), type) != 0;
482 	}
483 
484 	/**
485 	 * Get a property of type %GST_TYPE_ARRAY and transform it into a
486 	 * #GValueArray. This allow language bindings to get GST_TYPE_ARRAY
487 	 * properties which are otherwise not an accessible type.
488 	 *
489 	 * Params:
490 	 *     object = the object to set the array to
491 	 *     name = the name of the property to set
492 	 *     array = a return #GValueArray
493 	 *
494 	 * Since: 1.12
495 	 */
496 	public static bool getObjectArray(ObjectG object, string name, out ValueArray array)
497 	{
498 		GValueArray* outarray = null;
499 
500 		auto p = gst_util_get_object_array((object is null) ? null : object.getObjectGStruct(), Str.toStringz(name), &outarray) != 0;
501 
502 		array = ObjectG.getDObject!(ValueArray)(outarray);
503 
504 		return p;
505 	}
506 
507 	/**
508 	 * Transfer a #GValueArray to %GST_TYPE_ARRAY and set this value on the
509 	 * specified property name. This allow language bindings to set GST_TYPE_ARRAY
510 	 * properties which are otherwise not an accessible type.
511 	 *
512 	 * Params:
513 	 *     object = the object to set the array to
514 	 *     name = the name of the property to set
515 	 *     array = a #GValueArray containing the values
516 	 *
517 	 * Since: 1.12
518 	 */
519 	public static bool setObjectArray(ObjectG object, string name, ValueArray array)
520 	{
521 		return gst_util_set_object_array((object is null) ? null : object.getObjectGStruct(), Str.toStringz(name), (array is null) ? null : array.getValueArrayStruct()) != 0;
522 	}
523 }